1. Blöschl G., Hall J., Viglione A., Perdigão R.A.P., Parajka J., Merz B., Lun D., Arheimer B., Aronica G.T., Bilibashi A. Changing climate both increases and decreases European river floods. NATURE 2019; 573: 108–111. https://doi.org/10.1038/s41586-019-1495-6
2. Chen X., Huang J., Han Z., Gao H., Liu M., Li Z., Liu X., Li Q., Qi H., Huang Y. The importance of short lag-time in the runoff forecasting model based on long short-term memory. J HYDROL. 2020; 589: 125359. https://doi.org/10.1016/j.jhydrol.2020.125359
3. Di Baldassarre G., Montanari A., Lins H., Koutsoyiannis D., Brandimarte L., Bloschl G. Flood fatalities in Africa: from diagnosis to mitigation. GEOPHYS. RES. LETT. 2010; 37: 045467. https://doi.org/10.1029/2010GL045467
4. Yuan X., Wang L., Wu P., Ji P., Sheffield J., Zhang M. Anthropogenic shift towards higher risk of flash drought over China. NAT. COMMUN. 2019; 10: 126927. https://doi.org/10.1038/s41467-019-12692-7
5. Zhang Q., Xiao M., Singh V.P., Li J. Regionalization and spatial changing properties of droughts across the Pearl River basin, China. J. HYDROL. 2012; 472-473: 355–366. https://doi.org/10.1016/j.jhydrol.2012.09.054
6. Beven K.J. Rainfall-runoff modelling: the primer. John Wiley & Sons. 2011.
7. Liu Z., Wang Y., Xu Z., Duan Q. Conceptual Hydrological Models, in: Duan, Q., Pappenberger, F., Wood, A., Cloke, H.L., Schaake, J.C. (Eds.), Handbook of Hydrometeorological Ensemble Forecasting. 2019.
8. Vafakhah M., Janizadeh S., Khosrobeigi Bozchaloei S. Application of several data-driven techniques for rainfall-runoff modeling. ECOPERSIA 2014; 2(1), 455-469. https://doi.org/20.1001.1.23222700.2014.2.1.5.2
9. Xie T., Zhang G., Hou J., Xie J., Lv M., Liu F. Hybrid Forecasting Model for Non-Stationary Daily Runoff Series: A Case Study in the Han River Basin, China. J. HYDROL. 2019; 577: 123915. https://doi.org/10.1016/j.jhydrol.2019.123915
10. Zuo G., Luo J., Wang N., Lian Y., He X. Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. J. HYDROL. 2020; 585: 124776. https://doi.org/10.1016/j.jhydrol.2020.124776
11. Seibert J., Vis M.J.P., Kohn I., Weiler M., Stahl K. Representing glacier geometry changes in a semi-distributed hydrological model. HYDROL. EARTH. SYST. SC .2018; 22: 2211–2224. https://doi.org/10.5194/hess-22-2211-2018, 2018.
12. Mao G., Wang M., Liu J., Wang Z., Wang K., Meng Y., Zhong R., Wang H., Li Y. Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation. PHYS. CHEM. EARTH. PT A/B/C. 2021; 123: 103026. https://doi.org/10.1016/j.pce.2021.103026
13. Zhang J., Chen X., Khan A., Zhang Y.k., Kuang X., Liang X., Taccari L.M., Nuttall J. Daily runoff forecasting by deep recursive neural network. J. HYDROL. 2021; 596: 126067. https://doi.org/10.1016/j.jhydrol.2021.126067
14. Cannas B., Fanni A., Sias G., Tronei S., Zedda M.K. River flow forecasting using neural networks and wavelet analysis. Geophysical Research Abstracts. 2005; 7: 08651.
15. Chen C., Hui Q., Xie W., Wan S., Zhou Y., Pei Q. Convolutional Neural Networks for Forecasting Flood Process in Internet-of-Things Enabled Smart City. COMPUT. NETW. 2021; 186: 107744. https://doi.org/10.1016/j.comnet.2020.107744
16. Moosavi V., Malekinezhad H., Shirmohammadi B. Fractional snow cover mapping from MODIS data using wavelet-artificial intelligence hybrid models. J. HYDROL. 2014; 511: 160–170. https://doi.org/10.1016/j.jhydrol.2014.01.015
17. Moosavi V., Vafakhah M., Shirmohammadi B., Behnia N. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. WATER. RESOUR. MANAG. 2013; 27: 1301–1321. https://doi.org/10.1007/s11269-012-0239-2
18. Quilty J., Adamowski J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J. HYDROL. 2018; 563: 336–353. https://doi.org/10.1016/j.jhydrol.2018.05.003
19. Shoaib M., Shamseldin A.Y., Melville B.W. Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J. HYDROL. 2014; 515: 47-58. https://doi.org/10.1016/j.jhydrol.2014.04.055
20. Wang W.C., Chau K.W., Qiu L., Chen Y.B. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. ENVIRON. RES. 2015; 139: 46-54. https://doi.org/10.1016/j.envres.2015.02.002
21. Shoaib M., Shamseldin A.Y., Melville B.W., Khan M.M. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. J. HYDROL. 2016 535; 211-25. https://doi.org/10.1016/j.jhydrol.2016.01.076
22. Tan Q.F., Lei X.H., Wang X., Wang H., Wen X., Ji Y., Kang A.Q. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. J. HYDROL. 2018; 567: 767-80. https://doi.org/10.1016/j.jhydrol.2018.01.015
23. Zia Abadi L., Ahmadi H. Comparison of EPM and geomorphology methods for erosion and sediment yield assessment (A case study: in Kasilian Watershed, Mazandaran Province, Iran). DESERT 2011; 16: 103-109. https://doi.org/10.22059/JDESERT.2012.24741
24. Guan J., Lai R., Xiong A., Liu Z., Gu L. Fixed pattern noise reduction for infrared images based on cascade residual attention cnn. NEUROCOMPUTING 2020; 377: 301–313. https://doi.org/10.1016/j.neucom.2019.10.054
25. Song C.M. Data construction methodology for convolution neural network based daily runoff prediction and assessment of its applicability. J. HYDROL. 2022; 605: 127324. https://doi.org/10.1016/j.jhydrol.2021.127324
26. Liu Y., Hou G., Huang F., Qin H., Wang B., Yi L. Directed graph deep neural network for multi-step daily streamflow forecasting. J. HYDROL. 2022; 607: 127515. https://doi.org/10.1016/j.jhydrol.2022.127515
27. Wan S., Goudos S. Faster r-cnn for multi-class fruit detection using a robotic vision system. COMPUT. NETW. 2020; 168: 107036. https://doi.org/10.1016/j.comnet.2019.107036
28. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. P. IEEE. 1998; 86: 2278–2324. https://doi.org/10.1109/5.726791
29. Nourani V., Behfar N. Multi-station runoff-sediment modeling using seasonal LSTM models. J. HYDROL. 2021; 601: 126672. https://doi.org/10.1016/j.jhydrol.2021.126672