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Aims: The main aim of this study was to assess the efficacy of two important signal processing
approaches i.e., wavelet transform and ensemble empirical mode decomposition (EEMD) on
the performance of the convolutional neural network (CNN).

Materials & Methods: The study was performed in two watersheds i.e., the Kasilian and
Bar-Erieh Watersheds. In the first step, the CNN-based runoff modeling was done in its single
formi.e., using the original data as input. In the next step, the input data was decomposed into
several different sub-components i.e., approximation and details using Wavelet transform and
Intrinsic Mode Functions (IMFs) using EEMD. Then the decomposed data were imported to
the CNN model as input and combined Wavelet-CNN and EEMD-CNN models were provided.
Findings: The results showed that CNN in its single form could not estimate the one-day-
ahead runoff with acceptable accuracy. CNN in its original form had a moderate performance
(with NRMSE of 83 and 66%). However, the application of Wavelet transform and EEMD in
combination with CNN produced acceptable results. It was shown that Wavelet transform
had a higher impact (with NRMSE of 48 and 26%) on the performance of CNN in comparison
to EEMD (with NRMSE of 52 and 61%).

Conclusion: This study showed that signal processing approaches can enhance the ability
of deep learning methods such as CNN in predicting runoff values for one-day-ahead.
However, the impact of signal processing methods on the performance of deep learning
methods is not equal.
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Introduction

Runoff forecasting is of paramount
importance in water resource management,
flood mitigation, drought mitigation, and
ecosystem service assessment [ 2 3 4 5],
Accurate streamflow forecasting can help
regional authorities to take appropriate
strategies. Three main types of modeling
approaches canbe used for runoffforecasting
i.e., empirical, conceptual, and physically
based models & 7 8 9 10 Conceptual and
physically based models usually consider
the process of the phenomenon that is
being modeled. They are robust models
and generally produce acceptable results.
However, these types of models are relatively
complex and require a great deal of data [,
Also, they encompass several parameters in
their structure that should be calibrated. The
huge number of variables and parameters
can sometimes meaningfully increase
the uncertainty in the modeling results.
Empiricalmodelsareacceptablealternatives,
especially in data-scarce conditions. These
models which are also known as data-driven
models such as regression artificial neural
networks, support vector regression, and
adaptive neuro-fuzzy inference systems
explore the relation between runoff and
some independent variables. These models
are relatively simply applicable. Artificial
intelligence methods are the most robust
data-driven models. With the advent of
strong computer processors, deep learning
methods have been widely used in different
fields, especially in hydrology %13l The main
advantage of deep learning over traditional
neural networks is related to its high level
of complexity and higher depth of hidden
layers. One of the most widely used deep
learning methods is the convolutional neural
network (CNN) which is developed based on
the local connectivity idea.

The main problem with runoff modeling
with artificial intelligence models is related

to the non-stationarity of data. Artificial
intelligence models usually cannot deal with
highly non-stationary signals (time series)
[14.15.16] Sjgnal processing approaches can be
used to cope with this problem -8, Wavelet
transform (WT) and Ensemble Empirical
Mode Decomposition (EEMD) are the most
widely used signal processing methods that
can be used in conjunction with artificial
intelligence methods. Different studies have
assessed the effect of wavelet transform
and EEMD on the performance of artificial
intelligence models to forecast runoff.
Shoaib et al. (2014) U9 investigated the
efficacy of some mother wavelets on the
performance of the artificial neural network
in runoff prediction. In this study, the hybrid
MLP and SVR models have been processed
using both continuous and discrete wavelet
transformations. The performance of 92
hybrid models was assessed in comparison
with single and simple neural network
models without any pre-processing. Their
results showed that wavelet has a significant
effect on the performance of neural network
models. Wang et al. (2015) ?% proposed a
combined artificial neural network (ANN)
-Ensemble Empirical Mode Decomposition
(EEMD) model for predicting medium and
long-term runoff time series. In this study,
first of all, the time series of runoff was
decomposed into a limited and often small
number of the IMFs and the remaining series
were analyzed using the EEMD technique to
gain deeper insights into data properties. In
the next step, all IMFs and residuals were
predicted by ANN models. Finally, the IMF
prediction results were modeled and the
remaining series were collected to provide
an ensemble prediction for the main annual
runoff series. The results showed that EEMD
can effectively increase the forecast accuracy
and the proposed EEMD-ANN model
can achieve a significant improvement
over the ANN approach in predicting
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Figure 1) Location of the Kasilian and Bar-Erieh Watersheds in Iran.
runoff time series. Shoaib et al. (2016) ?/  the efficacy of the signal processing

investigated the effect of wavelet transform
on the performance of Lagged Recurrent
Neural Network (TLRNN) model in runoff
forecasting. Single and hybrid models were
then compared. The results showed that
TLRNN models with wavelet transform
can be used as a good alternative for static
wavelet MLPNN models. Tan et al. (2018) [22
investigated the effect of the EEMD signal
processing method on the performance
of ANN models in runoff prediction. The
results demonstrated that the hybrid EEMD-
ANN model outperformed the single ANN
model. Mao et al. (2021) % examined the
performance of artificial intelligence and
common hydrological models in runoff
modeling. The results showed that the
artificial neural network model and LSTM
had higher accuracies for monthly and daily
time scales, respectively.

Both WT and EEMD decompose the main
variables into their sub-components.
This decomposition can enhance the
performance of data-driven models. In
this regard two different watersheds
i.e.,, the Kasilian Watershed and the Bar-
Erieh Watershed were selected to assess

approaches on the performance of deep
learning methods for runoff forecasting. The
selection of two different watersheds helps
the generalizability of the results. To the
best of our knowledge, no research has been
performed on the combination of WT and
EEMD with a convolutional neural network
for runoff forecasting. The main goal of this
study was to compare the performance of the
convolutional neural network in its simple
form with the combined signal processing-
CNN models.

Materials & Methods

Study area and data

Two  physically and climatologically
different watersheds i.e., the Kasilian
Watershed, and the Bar-Erieh Watershed
were used to perform this study to increase
the generalizability of the results. Figure
1 shows the study area. Part A of Figure 1
shows the Kasilian Watershed with an area,
precipitation, slope, and elevation of 68km2,
809mm, 15.8%, and 1691m, respectively
(231 Part B of Figure 1 shows the Bar-Erieh
Watershed which covers an area of 113
km?2. The precipitation, slope, and elevation
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Figure 2) Schematic illustration of convolutional neural network (27).

of this watershed are 330mm, 11.9%, and
2226m, respectively. Important data i.e,
rainfall, air temperature, evaporation, air
humidity, wind speed, and discharge data
were obtained in the first step. Climatic data
as well as discharge with appropriate time
lags (i.e., discharge for previous days) were
used as input and the discharge for one-day-
ahead was used as the target in the modeling
process. The modeling process is performed
on a daily time scale and for 20 years.
Deep learning model

The convolutional neural network was used
in this study for daily runoff forecasting
(24,25 26, 271 Convolutional Neural Network
(CNN) has been used in different fields. 8!
proposed the convolutional neural network
and developed the LeNet-5 model for the
first time. This method consists of three
main layers namely convolutional, pooling,
and fully-connected layers ['*l. As Figure
2 shows the CNN includes a series of 1D
convolutional blocks, a Batch norm layer,
ReLU activation functions, a max pooling
1D layer, and finally fully connected layers.
In the next step, the input variables and
the result of convolutional blocks are
concatenated and imported to the fully
connected layer and the output is calculated
(29111 The convolution layer performs some
mathematical operations by using filters on
the data. The pooling layer performs a down-
sampling process. Max and average are two

main pooling methods. The results of the
pooling layer will pass the fully connected
layer. The data were divided into two subsets
i.e.,, train and test with a 70/30% ratio.
70% of the data were used for training or
calibration processes. The training process
was performed in two steps consisting of a
forward stage in which the input is passed
completely through the network and the
backward stage in which gradients are back-
propagated and weights are updated.
The combined signal processing-deep
learning model

To provide combined signal processing-
deep learning models, the original datasets
ie, climatic and hydrometric data were
decomposed using wavelet transform and
EEMD signal processing methods. There
are two main types of wavelet transforms
i.e., continuous (CWT) and discrete (DWT)
transforms. As the continuous wavelet
transform provides a greatdeal of data, discrete
wavelet transform was used in this study.
Wavelet transforms as a linear transformation
uses some base functions that are known as
mother wavelets. The mother wavelets are
used to extract different coefficients from the
original signal (that are meteorological and
hydrometric data here). DWT provides a high-
frequency component namely detail and alow-
frequency component namely approximation.
Several different mother wavelets such as
Daubechies (db2, db3, db4, db5, db6, db7,
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Figure 3) The results of convolutional neural network runoff modeling. I) Kasilian Watershed, and II) Bar-Erieh

Watershed.

db8, db9, db10), Coiflet (coifl, coif2, coif3,
coif4, coif5), Symlet (sym2, sym3, sym4, symb5,
sym6, sym7, sym8) and Biorthogonal (bior1.3,

biorl.5, bior2.2, bior2.4, bior2.6, bior2.8,
bior3.1, bior3.3, bior3.5, bior3.7, bior3.9,
bior4.4, bior5.5, bior6.8) were tested in order
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Figure 4) Wavelet-based decomposition of discharge data using “db” mother wavelet in 5 levels, I) Kasilian

Watershed, and II) Bar-Erieh Watershed.

to find the best mother wavelet. The original
data were also decomposed at different levels
to find the optimal decomposition level. The
wavelet base function is shown in equations 1
and 2.

Vo (D) = =0(5) Eq. (1)

+oo ) 1
f(t)ﬁ

c =

t—b
W= Eq. (2)
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Figure 5) The results of wavelet-CNN runoff modeling, I) Kasilian Watershed, and II) Bar-Erieh Watershed.

in which is the mother wavelet, b is shifting
and a is the scaling factor.

The other time-frequency analysis which
was used in this study was Ensemble Em-
pirical Mode Decomposition (EEMD) which
is the modified version of Empirical Mode

Decomposition (EMD). In signal processing,
time-frequency analysis includes all tech-
niques that assess a signal in both the time
and frequency domains at the same time, us-
ing various time-frequency representations.
A time-frequency representation (TFR) can


https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Time%E2%80%93frequency_representation

w0l

£
& sl
a

| LL»L
uML W IV DY T MMVU sl L:

Sl el ﬂlm‘éw‘ Sl M‘\Hu MIM ILJ JL k

] 2000

2000 oot 7000

MF

000 5000 5000 7000

IMF2

|

MF4

IMFS

Discharge(m

o 1000

5000 7000

IMET

T T T

1 JJ\ II |
. Lo L JW\JJ\ le(\ '] J»JI i ULL n o N
. T T \

o 1000 2000 3000

2000 5000 5000 7000

MF2

o 1000 2000 3000

2000 5000 5000 7000

IMF3

o 1000 2000 3000

2000 5000 5000 7000

IMF4
%}

o 1000 2000 3000

2000 5000 5000 7000

o 1000 2000 3000

2000 5000 5000 7000

Figure 6) EEMD-based decomposition of discharge data, I) Kasilian Watershed, and II) Bar-Erieh Watershed.

be defined as the view of a signal characterized
by both time and frequency. EMD can be used
to treat nonstationary data. EMD decomposes
the original signals into some intrinsic mode
functions (IMFs). One of the main advantag-
es of EMD in comparison with the wavelet
transform is its self-adaptability which makes

it very user-friendly. However, the core disad-
vantage of EMD is a mode-mixing problem
that is a result of signal intermittency. EEMD
has solved the mode-mixing problem. This
method is known as a noise-assisted method
which adds white noise to the signals.

In this study, two parallel paths were
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followed. In the first path, the original data
were imported to the deep learning model
and in the second path, the decomposed
data using wavelet transform and EEMD
were imported to the deep learning model.
The results were then compared to identify
the effect of signal processing approaches on
the performance of the deep learning model.

Findings

Figure 3 shows the results of the CNN
model using the original data without any
preprocessing of the data. Part I shows
the results for the Kasilian Watershed
and part Il shows the results for the Bar-
Erieh Watershed. In each part, there are
three sections. Section "a” demonstrates
the variations of estimated and observed
discharges, section “b” shows the scatter
plot of estimated and observed discharges,
and section "¢’ denotes the g-q plot. As
this figure shows, CNN in its single form
produces moderate results. The NSEs for
Kasilian and Bar-Erieh are about 0.51
and 0.87, respectively. The coefficients of
determination for Kasilian and Bar-Erieh
are about 0.69 and 0.87, respectively.
Figure 4 shows the results of wavelet
decomposition on discharge data using the
"db” mother wavelet in 5 levels for Kasilian
(I) and Bar-Erieh (II) watersheds. As this
Figure shows there are one approximation
component and 5 detail components.
Approximation shows the low-frequency
variations and detail components show
the high-frequency variations in the
discharge data. Figure 5 shows the results
of the combined wavelet-CNN model for the
Kasilian (I) and Bar-Erieh (II) watersheds.
As this figure shows, the coefficients of
determination for Kasilian and Bar-Erieh are
about 0.9 and 0.98, respectively. The NSEs for
Kasilian and Bar-Erieh are also about 0.9 and
0.97, respectively. It is shown that wavelet
transform could significantly enhance the

performance of deep learning methods such
as CNN. As we can understand from Figures
3 and 5, wavelet transform increased the
coefficients of determination by 30% and
12% for Kasilian (I) and Bar-Erieh (II)
watersheds, respectively. It also increased
the NSE by 76% and 11% for Kasilian (I) and
Bar-Erieh (II) watersheds, respectively. The
NRMEs were enhanced by 41% and 60%, for
Kasilian (I) and Bar-Erieh (II) watersheds,
respectively. The better results of modeling
in the Bar-Erieh Watershed may be related to
the more regular and symmetrical variations
of discharge in this watershed.

Figure 6showsthe EEMD-based decomposition
of discharge data. As this figure shows, the
main signal is decomposed to several IMFs.
The first IMF shows the component with the
highest frequency and the other IMFs show
the components with lower frequencies.
Figure 7 shows the results of combined EEMD-
CNN runoff modeling for Kasilian (I) and Bar-
Erieh (II) watersheds. As this figure shows, the
coefficients of determination for Kasilian and
Bar-Erieh are about 0.9 and 0.88, respectively.
The NSEs for Kasilian and Bar-Erieh are also
about 0.81 and 0.88, respectively. It is shown
that the EEMD transform could enhance the
performance of deep learning methods such
as CNN to some extent. As we can understand
from Figures 3 and 7, EEMD increased the
coefficients of determination by 30% and 1%
for Kasilian (I) and Bar-Erieh (II) watersheds,
respectively. It also enhanced the NSE by 58%
and 1% for Kasilian (I) and Bar-Erieh (II)
watersheds, respectively. The NRMEs were
also enhanced by 37% and 7%, for Kasilian (I)
and Bar-Erieh (II) watersheds, respectively.

Discussion

The results of all models are shown in Table 1
for an easier conclusion. The main advantage of
a convolutional neural network in comparison
with other neural networks is the ability to
detect some important features from the
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Figure 7) The results of EEMD-CNN runoff modeling,

ErietWatershed

original data without any human control. In a
simple neural network, the original data are
imported to the hidden layers and the weights
are computed. When the size of data increases,
the number of weights and parameters in the
structure of the neural network that should be
tuned increases dramatically. In this situation,

Q-QPlot

Estimated Quantiles

+ L L L L L L
4 3 2 El o 1 2 3

Standard Normal Quantiles

I) Kasilian Watershed, and II) Bar-

overfitting can easily occur. A convolutional
neural network by extracting important
features and using convolution and pooling
functions provides a very robust structure to
deal with a huge number of data and to find
very complex relations between dependent
and independent variables. As the relations



Table 1) The final results of CNN, WT-CNN, and EEMD-CNN models.

Kasilian Watershed

Bar-Erieh Watershed

Model

R? NRMSE (%) NSE R? NRMSE (%) NSE
CNN 0.69 83.1 0.51 0.87 66.6 0.87
WT-CNN 0.9 48.9 0.9 0.98 26.3 0.97
EEMD-CNN 0.9 52.1 0.81 0.88 61.9 0.88

in natural processes are usually intricate,
the simple neural networks sometimes fail
to determine the relations appropriately. In
these cases, deep learning methods are good
approaches to cope with these problems.
Deep learning as a machine learning approach
imitates the behavior of the human brain
to detect the relations between different
variables in a specific process. In this type of
neural network, several hidden layers are used
despite the simple neural network that usually
includes a handful of hidden layers. The other
advantage of the deep learning method is its
ability to work with unstructured data and its
better self-learning capabilities. Having several
hidden layers make deep learning models able
to efficiently learn the behavior of the process
applying more complicated computations.
Using these advantages, deep learning
methods usually outperform other machine
learning approaches. The next advantage of
deep learning methods against traditional
approaches is their high scalability. This
approach performs a lot of computations on a
huge number of data effectively. It significantly
increases the generalizability of the results
obtained using deep learning models.

Conclusion

The study revealed that the Wavelet
transform and EEMD had a significant
effect on the performance of deep learning
methods in runoff modeling and prediction.

The single form of CNN had a moderate
performance in estimating runoff values
for one-day-ahead. The results showed that
both Wavelet transform and EEMD enhanced
the performance of CNN. However, Wavelet
transform had a higher impact on the CNN
rather than EEMD. The results are following
many previous studies such as 1% 20 21 22],
There are some limitations related to the
deep learning method. Like other empirical
methods, deep learning algorithms cannot
consider the process and just determine a
relation between input and output variables.
These methods need a rather huge amount of
data for the training step. In addition, these
models have a local performance and can
only be used for the area for which the model
is developed. The other main point that
should be taken into account is the higher
computational cost of Wavelet transform
compared to EEMD. Finding the optimum
mother Wavelet and decomposition level is
a time-consuming task. It should be done
using a trial-and-error method (which was
done in this study) or by combining the
modeling approaches with optimization
methods such as genetic algorithm or
particle swarm optimization method. EEMD
doesn’t need any pre-conception. Therefore,
if the results with higher accuracies are
needed, Wavelet transform can be a better
option. Otherwise, EEMD can be used to
enhance the performance of CNN to some



extent. Other signal processing methods
such as singular spectrum analysis (SSA)
can be used in conjunction with CNN. Also,
performing other deep learning methods
such as Long short-term memory (LSTM) or
auto-encoders can be suggested for future
studies.
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