References:
1. Albostan A., Önöz B. Implementation of chaotic analysis on river discharge time series. Energ. Pow. Eng. 2015; 7:81–92. https://doi.org/10.4236/epe.2015.73008
2. Mihailović D.T., Malinović-Milićević S., Han J., Singh V.P. Complexity and chaotic behavior of the US Rivers and estimation of their prediction horizon. J. Hydrol. 2023; 622:129730. https://doi.org/10.1016/j.jhydrol.2023.129730
3. Baggaley N.J., Langan S.J., Futter M.N., Potts J.M., Dunn S.M. Long-term trends in hydro-climatology of a major Scottish mountain river. Sci. Total Environ. 2009; 407:4633–41. https://doi.org/10.1016/j.scitotenv.2009.04.015
4. Martínez J.H., Lehnertz K., Rubido N. Introduction to focus issue: Data-driven models and analysis of complex systems. CHAOS 2025; 35. https://doi.org/10.1063/5.0263794
5. Zhao Y., Zhu T., Zhou Z., Cai H., Cao Z. Detecting nonlinear information about drought propagation time and rate with nonlinear dynamic system and chaos theory. J. Hydrol. 2023; 623:129810. https://doi.org/10.1016/j.jhydrol.2023.129810
6. Baker G.L., Gollub J.P. Chaotic dynamics: an introduction. Cambridge Univ. Press; 1996.https://www.cambridge.org/core/books/chaotic-dynamics/D84B22ACFFAB488B75BF4C0725ED0DA5
7. Cunico I., Bertoldi W., Caponi F., Dijkstra H.A., Siviglia A. River ecomorphodynamic models exhibit features of nonlinear dynamics and chaos. Geophys. Res. Lett. 2024; 51(11):e2023GL107951. https://doi.org/10.1029/2023GL107951
8. Li T., Lan T., Zhang H., Sun J., Xu C.-Y., Chen Y.D. Identifying the possible driving mechanisms in precipitation-runoff relationships with nonstationary and nonlinear theory approaches. J. Hydrol. 2024; 639:131535.
https://doi.org/10.1016/j.jhydrol.2024.131535
9. Sivakumar B. Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 2000; 227:1–20. https://doi.org/10.1016/S0022-1694(99)00186-9
10. Ghorbani M.A., Kisi O., Aalinezhad M. A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods. Appl Math Model. 2010; 34:4050–7. https://doi.org/10.1016/j.apm.2010.03.036
11. Khatibi R., Sivakumar B., Ghorbani M.A., Kisi O., Koçak K., Zadeh D.F. Investigating chaos in river stage and discharge time series. J. Hydrol. 2012; 414:108–17. https://doi.org/10.1016/j.jhydrol.2011.10.026
12. Zounemat-Kermani M. Investigating chaos and nonlinear forecasting in short term and mid-term river discharge. Water Resour. Manag. 2016; 30:1851–65. https://doi.org/10.1007/s11269-016-1258-1
13. Ogunjo S., Olusola A., Fuwape I., Durowoju O. Temporal variation in deterministic chaos: the influence of Kainji dam on downstream stations along lower Niger River. Arab J. Geosci. 2022; 15:237. https://doi.org/10.1007/s12517-021-09297-0
14. Rezaie H., Garebaghi P., Khani Temeliyeh Z., Mirabbasi-Najafabadi R. Monthly flow analysis of Sefidrood River using Chaos theory. Water Soil Manage. Model 2022; 2:27–41. https://doi.org/10.22098/mmws.2021.9431.1043
15. Rolim L.Z.R., de Souza Filho F.A. Exploring spatiotemporal chaos in hydrological data: evidence from Ceará, Brazil. Stoch. Env. Res. Risk A. 2023; 37:4513–37. https://doi.org/10.1007/s00477-023-02501-5
16. Kavian A., Dodangeh S., Abdollahi Z. Annual suspended sediment concentration frequency analysis in Sefidroud Watershed, Iran. Model Earth Syst. Environ. 2016; 2:48. https://doi.org/10.1007/s40808-016-0101-2
17. Avarand Y., Janatrostami S., Ashrafzadeh A., Pirmoradian N. Developing fuzzy multi-objective planning model for agricultural water management in areas outside the Sefidrood irrigation and drainage network by determining effective precipitation. Iran J. Soil Water Res. 2023; 1901-1920. https://ijswr.ut.ac.ir/article_90934.html?lang=en
18. Najafi M.S., Alizadeh O. Climate zones in Iran. Meteorological Applications. 2023;30:1–10.
19. Zareian M.J., Seraj Ebrahimi R., Dehban H. Investigating the impact of climate change on extreme temperature and precipitation in the Sefidrood Watershed based on CMIP6 Models. JWSS 2024; 28(3):53–71. https://jstnar.iut.ac.ir/article-1-4416-en.html
20. Ghorbani A., Moameri M., Dadjou F., Seyedi Kaleybar S.A., Pournemati A., Asghari S. Determinization of environmental factors effects on plants production in QezelOzan-Kosar rangelands, Ardabil Province. ECOPERSIA 2020; 8(1):47–56. https://ecopersia.modares.ac.ir/article-24-36698-en.html
21. Benmebarek S., Chettih M. Chaotic analysis of daily runoff time series using dynamic, metric, and topological approaches. ACTA Geophys. 2024; 72:2633–51.
https://link.springer.com/article/10.1007/s11600-023-01150-0
22. Kostelich E.J., Schreiber T. Noise reduction in chaotic time-series data: A survey of common methods. Phys. Rev. E. 1993; 48:1752. https://link.aps.org/doi/10.1103/PhysRevE.48.1752
23. Priestley M.B. The spectral analysis of time series. Oxford Univ Press; 1982. https://archive.org/details/spectralanalysis0000prie
24. Brockwell P.J., Davis R.A. Introduction to time series and forecasting. Springer; 2016.
https://link.springer.com/book/10.1007/978-3-319-29854-2
25. Bloomfield P. Fourier analysis of time series: an introduction. Wiley; 1976.
https://archive.org/details/fourieranalysiso0000bloo
26. Asakereh H. Power spectrum analysis of the time series of Tabriz annual temperature. Geogr. Res. 2009; 24(3):33–50. https://www.sid.ir/paper/30001/en
27. Cryer J.D. Chan K.S. Time series analysis. Springer; 2008. https://link.springer.com/book/10.1007/978-0-387-75959-3
28. Lin H. Nonlinear dynamic Process of fluvial process based on theories of chaos and dissipative structure. Preprint arXiv:250301593. 2025. https://arxiv.org/abs/2503.01593
29. Takens F. Detecting strange attractors in turbulence. In: Rand D.A., Young L.S., editors. Dynamical Systems and Turbulence, Warwick 1980. Springer; 2006; 81-366.
https://link.springer.com/chapter/10.1007/BFb0091924
30. Pari Zangeneh M., Ataei M., Moallem P. Phase space reconstruction of chaotic time series using an intelligent method. J. Electr. Eng. Dept., Trans. Electr. Technol. (Electron. Power). 2009; 1(2), 3-10.
https://doaj.org/article/7e082fb87a3c4792a44b7f9407547e2b
31. Kennel M.B., Brown R., Abarbanel H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A. 1992; 45:3403. https://link.aps.org/doi/10.1103/PhysRevA.45.3403
32. Vallejo J.C., Sanjuan M.A.F. Predictability of chaotic dynamics. Springer; 2017.
https://link.springer.com/book/10.1007/978-3-030-28630-9
33. Elshorbagy A., Simonovic S.P., Panu U.S. Noise reduction in chaotic hydrologic time series: facts and doubts. J. Hydrol. 2002; 256:147–65. https://doi.org/10.1016/S0022-1694(01)00534-0
34. Kantz H., Schreiber T. Nonlinear time series analysis. Cambridge Univ. Press; 2003. https://doi.org/10.1017/CBO9780511755798
35. Sobottka M., de Oliveira L.P.L. Periodicity and predictability in chaotic systems. Am. Math. Mon. 2006; 113:415–24. https://doi.org/10.2307/27641949
36. Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 1986; 33:1134. https://doi.org/10.1103/PhysRevA.33.1134
37. Bradley E., Kantz H. Nonlinear time-series analysis revisited. CHAOS 2015; 25.
https://doi.org/10.1063/1.4917289
38. Abarbanel H. Analysis of observed chaotic data. Springer; 1996.
https://doi.org/10.1007/978-1-4612-0763-4
39. Mayora-Cebollero C., Mayora-Cebollero A., Lozano Á., Barrio R. Full Lyapunov exponents spectrum with deep learning from single-variable time series. PHYSICA 2025; 472:134510. https://doi.org/10.1016/j.physd.2024.134510
40. Ayers D., Lau J., Amezcua J., Carrassi A., Ojha V. Supervised machine learning to estimate instabilities in chaotic systems: Estimation of local Lyapunov exponents. Q. J. R. Meteorol. Soc. 2023; 149:1236–62. https://doi.org/10.1002/qj.4450
41. Milly P.C.D., Wetherald R.T., Dunne K.A., Delworth T.L. Increasing risk of great floods in a changing climate. NATURE 2002; 415:514–7. https://doi.org/10.1038/415514a
42. Kangrang A., Pakoktom W., Nuannukul W., Chaleeraktrakoon C. Adaptive reservoir rule curves by optimisation and simulation. P. I. Civil Eng-Wat. M. 2017; 170(5), 219–230. https://doi.org/10.1680/jwama.15.00035
43. Kratzert F., Klotz D., Brenner C., Schulz K., Herrnegger M. Rainfall--runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sc. 2018; 22(11), 6005–6022. https://doi.org/10.5194/hess-22-6005-2018
44. Mosavi A., Ozturk P. Chau K. Flood prediction using machine learning models: Literature review. WATER 2018; 10(11), 1536. https://doi.org/10.3390/w10111536
45.Songsaengrit S., Kangrang, A. Dynamic rule curves and streamflow under climate change for multipurpose reservoir operation using honey-bee mating optimization. Sustain. 2022; 14(14), 8599. https://doi.org/10.3390/su14148599