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Aims: Understanding the dynamic nature of river discharge is essential for effective water 
management, particularly in regions subject to climatic and hydrological variability. This 
study applies chaos theory to detect nonlinear patterns in the monthly discharge of the 
Gilvan Sub-Watershed, a tributary of the Qezel Ozan River in northwestern Iran, integrating 
spectral noise diagnostics with implications for adaptive management.
Materials & Methods: Monthly discharge data (1963–2017) from the Gilvan hydrometric 
station were analyzed using phase space reconstruction. Optimal parameters—time 
delay of 2 months (Average Mutual Information) and embedding dimension of 6 (False 
Nearest Neighbors)—were applied. The correlation dimension was estimated using the 
Grassberger–Procaccia algorithm, and the largest Lyapunov exponent was computed to 
assess system sensitivity.
Findings: A significant decreasing trend in streamflow (p < 0.001) was detected, 
averaging 0.16 m³.s-1month-1 over the study period. The correlation dimension (2.3) 
indicated a low-dimensional attractor, while the positive largest Lyapunov exponent 
(0.08) confirmed sensitivity to initial conditions, a hallmark of chaos. These results 
suggest that streamflow dynamics are shaped by variable precipitation, snowmelt, 
evaporation, and anthropogenic factors.
Conclusion: The presence of chaos implies fundamental limits to long-term predictability 
and supports the need for nonlinear modeling in water management. Recognizing such 
complexity is vital for sustainable resource planning under changing climatic conditions. 
However, this study did not explicitly assess the mechanical effects of dams or other hydraulic 
infrastructure, and its findings may be influenced by data quality and spatial coverage—
issues that warrant further investigation.
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Introduction
Rivers, as integral components of 
hydrological and climatic systems, play 
an indispensable role in providing fresh 
water, sustaining aquatic ecosystems, and 
supporting the socio-economic development 
of human communities [1]. However, surface 
flows often exhibit complex and nonlinear 
behavior, characterized by highly variable, 
irregular, and, in many cases, chaotic 
patterns [2]. Understanding the inherent 
features of river discharge time series, 
including the presence or absence of chaotic 
behavior, is a crucial step in the sustainable 
management of water resources and in 
forecasting the impacts of climate change on 
hydrological systems [3]. This understanding 
not only contributes to a better grasp of flow 
dynamics but also lays the foundation for 
designing more accurate predictive models 
and efficient management policies [4].
The significance of studying river flow 
behavior becomes even more pronounced 
as neglecting complex, nonlinear patterns 
can lead to the development of inefficient 
management programs, especially in scenarios 
where climate change and human activities 
exert increasing pressure on water resources 
[5]. In this regard, identifying chaotic patterns 
in discharge time series can help improve flow 
forecasting, flood risk management, and the 
formulation of adaptive policies in response 
to hydrological variability [2]. This need is 
particularly evident in regions with variable 
climates and fragile ecosystems, such as the 
watersheds in Iran.
Chaos theory provides a theoretical 
framework for analyzing nonlinear 
dynamical systems where, despite the 
presence of deterministic equations, long-
term prediction becomes difficult due to 
extreme sensitivity to initial conditions [6,7]. 
In this theory, chaotic behavior is identified 
through the presence of a strange attractor 
in phase space, fractional correlation 

dimension, and positive Lyapunov exponent 
[8]. These characteristics indicate that 
seemingly random fluctuations within a 
system can result from deterministic but 
nonlinear dynamics [9,10]. In hydrology, 
such behavior often arises from the complex 
interactions between climatic factors such as 
precipitation and evaporation, topographic 
features of the watershed, and human 
interventions such as dam construction and 
land-use changes [7].
Several studies in the field of hydrology have 
confirmed the presence of chaotic behavior 
in river discharge time series. For example, 
Khatibi et al. [11] identified chaotic behavior 
at the Sogutluhan hydrometric station in 
Türkiye; Albostan & Ö� nöz [1] reported similar 
findings in Turkish rivers; Zounemat-
Kermani [12] observed chaos in the Daintree 
River of Australia; Ogunjo et al. [13] confirmed 
this behavior in the Niger River; Rezaie et al. 
[14] found similar results for the Sefidrood 
River in Iran; and Rolim & de Souza Filho [15] 
reported chaos in Brazilian river watersheds. 
These studies demonstrate that chaos theory 
tools, such as phase space reconstruction, 
correlation dimension analysis, and 
Lyapunov exponent estimation, are effective 
in identifying nonlinear dynamics of surface 
flows. Despite the growing global interest 
in applying chaos theory to hydrology, its 
implementation in Iranian watersheds 
remains limited, primarily due to challenges 
related to data continuity, quality, and 
the complexity of nonlinear analytical 
methods. This study aims to address this 
gap by applying chaos diagnostics to a rare, 
long-term, and high-quality streamflow 
dataset from the Gilvan Sub-Watershed, 
which provides an opportunity to explore 
the nonlinear dynamics of river systems in 
northwestern Iran more reliably.
The Gilvan Sub-Watershed, a tributary of the 
Qezel Ozan River and part of the Sefidrood 
Basin, offers an ideal case study due to 
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the availability of consistent hydrological 
records (1963–2017), its distinctive 
snowmelt-driven regime, and its exposure to 
upstream human interventions. In particular, 
the basin’s montane setting and strong 
seasonal variability in runoff contribute to 
nonlinear streamflow behavior, making it 
well-suited for chaos-based analysis. These 
features underline the novelty of applying 
chaos theory tools in this context, where 
short or discontinuous datasets have limited 
previous studies.
This study addresses several common 
limitations in chaos-based hydrological 
research by utilizing a continuous 54-
year dataset from the Gilvan Station and 

applying rigorous tools such as phase space 
reconstruction, correlation dimension, 
and Lyapunov exponent analysis. These 
methodological strengths reinforce the 
reliability of the results and demonstrate 
the practical value of chaos theory in 
understanding hydrological complexity 
in snow-influenced, mountainous sub-
watersheds like Gilvan, where traditional 
linear models often fall short.
The primary objective of this study is to 
investigate the chaotic behavior of the 
discharge time series from the Gilvan Sub-
Watershed, a tributary of the Qezel Ozan 
River, using long-term data from the Gilvan 
station. Specifically, this research aims to: 

Figure 1) Location of the study area within the Sefidrood Watershed, highlighting the Gilvan Sub-Watershed, 
Zanjan Province, Iran (Code: 17-033). 

The slope across the sub-watershed ranges from 0% to 266.7%, indicating considerable topographic variation.
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(1) reconstruct the phase space of the river 
flow and identify the presence of a strange 
attractor, (2) determine key parameters 
such as optimal delay time and embedding 
dimension, (3) confirm the presence 
or absence of chaos by calculating the 
correlation dimension and largest Lyapunov 
exponent, and (4) provide insights for 
advanced modeling and optimal water 
resource management in the watershed. 

Materials & Methods
Geographical Setting of the Study Area
This study focuses on the Gilvan Sub-
Watershed, a key hydrological unit within the 
Sefidrood Watershed, located in the southern 
part of Zanjan Province, which offers a long-
term and consistent daily streamflow record 
suitable for nonlinear and chaos analysis[16]. 
Covering an area characterized by varied 
topography, the Gilvan Sub-Watershed 
features elevations ranging from 300 m to 
over 3,000 m [17] and slopes varying from 
0% to 266.7% (approximately 69°) in steep 
mountainous areas, as determined by ArcGIS 
slope analysis. It includes a partial contributing 
area of 29.90 km² and a total upstream 
drainage area of approximately 4988.32 km², 
with an average elevation of 1,514 m and a 
regional slope averaging around 20.5%. These 
physiographic characteristics, combined 
with seasonal precipitation patterns, drive 
nonlinear and potentially chaotic streamflow 
dynamics, making the sub-watershed an 
ideal candidate for chaos theory analysis [9]. 
Climatically, the area features a temperate, 
Mediterranean precipitation regime with 
winter-dominant rainfall and significant 
snowmelt, receiving approximately 300–800 
mm annually [18]. Geologically, the watershed 
includes a mixture of tertiary volcanic and 
intrusive rocks, contributing to the spatial 
heterogeneity of runoff generation [19].
Hydrological data for this study were 
obtained from the Gilvan hydrometric station 

No. 17-033. Daily streamflow records from 
1963 to 2017 (54 years) were used without 
temporal downsampling to preserve the full 
resolution of the nonlinear dynamics
This extended time series is particularly 
valuable for capturing the nonlinear 
dynamics and potential chaotic patterns in 
river discharge [11,14], as it encompasses a 
wide range of climatic and anthropogenic 
influences, including extreme events such as 
floods and droughts.
Figure 1 presents the geographic extent of the 
Sefidrood River Watershed in northwestern 
Iran and the location of the Gilvan Sub-
Watershed within it. The map also shows the 
distribution of hydrometric stations, including 
station No. 17-033, and the slope variation 
(%) across the Gilvan Sub-Watershed.
Noise Detection in Hydrological Time Series
In nonlinear and chaotic system analysis, the 
presence of noise can significantly obscure 
the system's intrinsic properties [19]. Noise 
typically appears as random, unpredictable 
fluctuations in the data and may mask 
genuine chaotic patterns [20]. Given the high 
sensitivity of methods such as the Lyapunov 
exponent and correlation dimension to data 
quality, identifying and mitigating noise is a 
critical initial step.
Spectral analysis is a practical approach 
for detecting noise in time series  [21]. In 
general, a noise-free time series displays a 
power spectrum with clear peaks at specific 
frequencies, indicating periodic or organized 
behavior. In contrast, noisy series—
particularly those affected by white or 
colored noise—exhibit either a flat spectrum 
(white noise) or a spectrum with a smooth 
downward slope (e.g., Brownian noise) [22]. 
To further verify the presence of colored 
noise, the slope of the log–log plot of power 
versus frequency was examined: a slope near 
-2 suggests Brownian noise, while a slope 
around -1 indicates pink noise [23].
Fourier-based spectral analysis was used in 
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this study to identify noise in the discharge 
time series before applying nonlinear 
methods. This method decomposes the 
time series into its frequency components, 
allowing for the detection of hidden patterns 
or anomalies as shown in Eq. (1) [24–26].

	
Eq. (1)

In Eq. (1), Zt​ represents the variable under 
analysis, and a0​, ai​, and bi are the Fourier 
coefficients, which can be estimated using 
the least squares method. Once the Fourier 
coefficients are obtained, the periodogram 
can be computed. The periodogram can 
be represented in various forms, such 
as power versus frequency or variance 
versus frequency [24,25]. After calculating 
the periodogram, it can be smoothed to 
estimate the spectral density. The smoothed 
periodogram serves as an estimate of the 
population spectrum [24].
It should be noted that before performing 
spectral analysis, detrending the time series 
is essential, as trends can significantly affect 
the power spectrum [21,25]. Trends usually 
appear as low-frequency components with 
high power and can mask the effects of noise 
and chaotic dynamics. Detrending ensures 
that the spectral analysis focuses solely on 
the system's intrinsic fluctuations rather 
than long-term structural changes that 
lie outside the scope of chaotic dynamics. 
Therefore, in this study, before conducting 
spectral analysis, the trend component was 
estimated using a least squares regression 
model and subsequently removed from the 
original time series.
Phase Space Reconstruction
To reconstruct and visualize the phase space 
of the discharge time series from the Gilvan 
Sub-Watershed, the time delay embedding 
method was employed. This technique, 
based on Takens’ Theorem [27], allows the 

hidden dynamics of a complex system to be 
reconstructed from a one-dimensional time 
series in a multidimensional phase space. The 
key parameters in this method are time delay 
and embedding dimension, which respectively 
define the optimal time interval between data 
points and the number of dimensions required 
to reveal the system’s dynamics.
Time Delay
The estimation of the time delay (τ) for 
phase space reconstruction is typically 
done using two methods, autocorrelation 
or Average Mutual Information (AMI). 
The autocorrelation function primarily 
examines linear dependencies between 
data points, whereas the Average Mutual 
Information method can account for 
both linear and nonlinear dependencies. 
Therefore, when analyzing complex systems 
such as hydrological or climatic systems, 
which exhibit nonlinear and chaotic 
behavior, the AMI method may provide 
better performance. The Average Mutual 
Information method operates based on 
information theory and assesses the amount 
of shared information between a time series 
and its delayed version. In other words, 
this method indicates the probability that 
neighboring points, such as x(t) and x(t+τ), 
are statistically dependent. If P(x(t), x 
(t+τ)) is the probability distribution of the 
points and P(x(t))P(x (t+τ)) is their joint 
probability distribution, the Average Mutual 
Information is calculated as Eq. (2) [6].

	
Eq. (2)

In the AMI method, the first time delay at 
which the mutual information reaches a 
local minimum is typically considered the 
optimal time delay.
To ensure reproducibility and methodological 
clarity, the nonlinear analysis steps were 
implemented using custom MATLAB scripts 
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written by the authors.
The computation of Average Mutual 
Information (AMI) followed the method 
described by Fraser and Swinney [35], with 
probability density estimation performed 
using uniform binning and the Freedman–
Diaconis rule for bin width selection.
For the False Nearest Neighbors (FNN) 
method, the Euclidean distances between 
reconstructed vectors were calculated, 
and the proportion of false neighbors was 
tracked across dimensions. A threshold 
of 10% was used to identify the optimal 
embedding dimension.
The correlation dimension was estimated 
using the Grassberger–Procaccia algorithm, 
and the largest Lyapunov exponent was 
calculated using the Rosenstein method, 
focusing on short-term trajectory divergence.
All analyses were conducted on the monthly 
discharge dataset (1963–2017) from the 
Gilvan station (Code: 17-033) using MATLAB 
R2022a. Although the code is not publicly 
available due to its proprietary nature, key 
implementation details can be provided 
upon request for academic purposes.
Embedding Dimension
To determine a suitable embedding 
dimension for reconstructing the phase space 
of the discharge time series, the False Nearest 
Neighbors (FNN) method was employed. 
This method evaluates the dimension in 
which discontinuities or inconsistencies in 
phase space trajectories are minimized or 
eliminated. In other words, if the phase space 
is embedded in an appropriate dimension, 
the trajectories do not intersect, and the 
discontinuities caused by projecting the phase 
space into too low a dimension disappear. In 
nonlinear dynamical systems such as river 
flow—which may exhibit chaotic or near-
chaotic behavior—selecting an appropriate 
embedding dimension is essential to prevent 
trajectory crossings and to reconstruct the 
system's dynamics accurately.

In the False Nearest Neighbors (FNN) 
method, the first step involves constructing 
delay vectors using the optimal time delay 
and a trial embedding dimension mmm. 
These vectors are generated from the time 
series to represent the system’s states in the 
reconstructed phase space. The delay vector 
Yi(t) is defined as Eq. (3) [28].

	
Eq. (3)

The above Eq. illustrates that two key factors 
determine the construction of delay vectors, 
including the number of components in each 
vector, which corresponds to the embedding 
dimension (m), and the time interval 
between successive components, which is 
the time delay (τ). Once the delay vectors are 
constructed, the rth nearest neighbor of each 
delay vector Yr

NN(t) is identified as Eq. (4) [28]. 

	
Eq. (4)

where tr​ denotes the time index of the rth nearest 
neighbor to Yr

NN(t) in the m-dimensional phase 
space. The distance between two neighboring 
delay vectors is calculated using the Euclidean 
norm, as Eq. (5) [28]. 

	
Eq. (5)

If the vector Yr(t) is a true neighbor of Y(t), 
this closeness reflects the actual dynamics of 
the system. However, if this proximity results 
merely from projecting a higher-dimensional 
phase space into a lower dimension, then 
upon increasing the embedding dimension 
from m to m+1, this neighbor will no longer 
remain close. Such a neighbor is referred to 
as a false nearest neighbor.
When the embedding dimension is increased 
from m to m+1, the newly added components 
to the delay vectors Yr(t) and Y(t) are and 
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respectively. Consequently, the Euclidean 
distance between the two vectors in the 
(m+1)-dimensional phase space is calculated 
as Eq. (6) [28].

	

Eq. (6)

The relative added distance, compared to 
the distance between the two delay vectors 
in the original m-dimensional space, is 
computed as Eq. (7) [28].

	
Eq. (7)

If the value obtained from the equation 
above exceeds a predefined threshold, the 
neighbor is classified as a false nearest 
neighbor. Based on previous research, it is 
recommended that this threshold be set 
between 10 and 15 [29].
This procedure is repeated for delay vectors 
constructed with progressively increasing 
embedding dimensions until the percentage 
of false nearest neighbors approaches zero 
or becomes negligibly small. The embedding 
dimension at which this occurs is then 
selected as the appropriate dimension for 
phase space reconstruction.
This method ensures that the phase 
space is reconstructed in such a way that 
phase trajectories do not intersect, and 
the nonlinear dynamic structure of the 
system is accurately revealed. Selecting 
an appropriate embedding dimension is 
essential for subsequent analyses, such as 
the computation of Lyapunov exponents.
Construction of Delay Vectors and Phase 
Space Plotting
In the next step, using the previously 
determined optimal time delay and 
embedding dimension, delay vectors are 
constructed in phase space based on Eq. (3). 
However, for visualization purposes, typically 

only two or three components of these vectors 
are plotted in a two- or three-dimensional 
space, although the actual system dynamics 
exist in a higher-dimensional space.
In general, plotting the phase space and 
identifying strange attractors facilitates 
the recognition of chaotic behaviors. In 
systems such as river flow dynamics, such 
behavior may indicate sensitivity to initial 
conditions, nonlinear responses, and the 
influence of climatic and environmental 
variables [30].
Chaos Analysis
Correlation Dimension
The correlation dimension is one of the 
most widely used and fundamental metrics 
for identifying and characterizing nonlinear 
dynamical systems, particularly chaotic 
systems. It helps assess the geometric and 
structural complexity of strange attractors 
in phase space and is commonly employed to 
distinguish between random, deterministic, 
and chaotic processes.
In this study, the correlation dimension is 
estimated using the correlation integral. 
The underlying assumption of this method 
is that purely random processes exhibit 
an infinite (continuous) dimension, while 
chaotic processes possess a finite, often fractal 
dimension. The approach involves constructing 
a hypersphere around a reference point in 
the phase space and gradually increasing its 
radius until it encompasses all points in the 
reconstructed attractor.
The correlation integral C(r), for an 
m-dimensional phase space, is defined as 
Eq.(8) [31].

	
Eq. (8)

where H is a Heaviside step function, defined 
as Eq. (9):

1 if u 0
H(u) =

0 if u<0
≥


 	

Eq. (9)
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In the above expressions, r represents the 
radius of the hypersphere centered at Yi ​ 
or Yj ​, and N is the total number of points 
in the phase space. For positive values of r, 
the correlation integral is related to r by the 
following expression (Eq. (10)).

2D

r®0, N®¥
C(r) »ar

	
Eq. (10)

where a is a constant coefficient, and D2​ is 
the correlation exponent. The correlation 
dimension D2​ is calculated using Eq. (11).

2 r®0, N®¥

log C(r)D = lim
log (r) 	

Eq. (11)

In practice, C(r) is plotted against log r, and the 
slope of the linear portion of the resulting graph 
is estimated using the least squares method 
for various embedding dimensions. Then, by 
plotting D2​ versus the embedding dimension, 
the nature of the underlying process can be 
determined. If D2​  increases continuously 
without saturation as the embedding dimension 
increases, the process is random. If the graph 
saturates, it suggests a deterministic process. 
Furthermore, if the saturated value of D2​ is non-
integer, the system is considered chaotic.
Lyapunov Exponent
The Lyapunov exponent is a fundamental 
indicator used to identify chaotic behavior in 
dynamical systems, including river discharge 
time series. This exponent quantifies the rate of 
divergence between neighboring trajectories 
in the reconstructed phase space. In chaotic 
systems, the presence of at least one positive 
Lyapunov exponent signifies sensitivity 
to initial conditions and the nonlinear 
deterministic nature of the system [30].
The Lyapunov spectrum can be computed 
from the reconstructed attractor. While 
many existing methods for calculating these 
exponents are mathematically intensive and 

complex, the algorithm proposed by Rosenstein 
provides a relatively straightforward approach 
to estimate the largest Lyapunov exponent 
(λmax ​) [6].
To apply the Rosenstein method, a reference 
point Yi​ is selected in the phase space, and the 
average distance of all neighboring points 
sn, which lie within a specific radius r of the 
reference point, is computed. This process is 
repeated for N points and is referred to as 
the stretching factor (Eq. (12)) [32]. 

0
0 0

N

n n
n =1 n

1 1S = ln s -s
N U(s )

 
 
 
 

∑ ∑
	

Eq. (12)

In Eq. (12), M represents the number of 
neighboring points identified around each 
reference point Yi​. By plotting the stretching 
factor S(N) against the number of time steps 
N, or equivalently against time t=NΔt, a 
curve is obtained whose linear region's slope 
provides an approximation of the largest 
Lyapunov exponent. If the estimated λmax ​ is 
positive, it serves as strong evidence that the 
system exhibits chaotic behavior.

Findings
Streamflow Characteristics and Trend Analysis
Figure 2 illustrates the monthly time series of 
the discharge from the Gilvan Sub-Watershed 
from 1963 to 2017. During this period, the mean 
discharge was approximately 89.7 m³.s-1. The 
maximum recorded discharge occurred in April 
1968, reaching a peak value of 1206.3 m³.s-1.
Trend analysis of the streamflow data was 
conducted using linear regression, which 
revealed a statistically significant decreasing 
trend at the 99% confidence level (p-value = 
0.000). The regression model y=141.4−0.16t 
suggests that, on average, the monthly 
discharge has decreased by approximately 
0.16 m³.s-1month-1 over the study period. 
This decline likely reflects the combined 
impacts of climate variability, reduced 
precipitation, snowmelt changes, upstream 
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water withdrawals, and land-use alterations. 
From a dynamical perspective, the long-
term downward trend indicates evolving 
boundary conditions that may influence 
the geometry of the reconstructed attractor 
and the intensity of chaotic behavior. While 
the system still exhibits key features of 
deterministic chaos, such as sensitivity to 
initial conditions, the reduced variability 
may limit predictability horizons. These 
findings highlight the necessity of adopting 
adaptive, nonlinear models that account for 
nonstationarity in river systems, particularly 
for long-term water management and 
environmental flow assessment.

Figure 2) Monthly time series of river discharge over 
the period 1963–2017 from the Gilvan Sub-Watershed, 
Zanjan Province, Iran.

Noise Assessment Test
To evaluate the presence or absence of noise 
in the time series, spectral analysis was 
employed. Given that trends can influence 
the outcome of spectral analysis, the original 
monthly discharge series from the Gilvan 
Sub-Watershed was first detrended. The 
detrended time series is illustrated in Figure 
3 (A), while the power spectrum of the 
detrended data is shown in Figure 3 (B).
The power spectrum reveals three 
dominant peaks at frequencies of 0.0833, 
0.1667, and 0.25, corresponding to return 
periods of 12 months, 6 months, and 4 
months, respectively. These peaks confirm 
the presence of seasonal patterns and 
indicate a strong cyclical structure within 

the time series. Such periodic components 
are typically associated with natural 
hydrological processes, including seasonal 
rainfall and snowmelt dynamics.

Figure 3) (A) Detrended monthly streamflow time 
series; (B) Power spectral density of the detrended 
series; (C) Log–log plot of power spectral density ver-
sus frequency for noise characterization from the Gil-
van Sub-Watershed, Zanjan Province, Iran.

The presence of distinct peaks and significant 
variations in power across different 
frequencies suggests that the time series 
does not follow a white noise process, which 
is characterized by a flat, featureless power 
spectrum [30]. Furthermore, the noticeable 
decline in power at higher frequencies also 
implies the absence of colored noise such as 
Brownian noise (1.f-²) or pink noise (1.f-1) [33].
To further verify this, the log–log slope of 
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the power spectrum was computed and is 
presented in Figure 3 (C). The estimated 
slope is −0.6, which is significantly lower in 
magnitude than what is typically expected 
for pink noise (−1) or Brownian noise (−2). 
This supports the conclusion that the time 
series does not contain meaningful colored 
noise either. Therefore, the data exhibits a 
structured, predictable pattern, making it 
well-suited for further nonlinear and chaos-
based analyses.
Phase Space Reconstruction
Time Delay Selection
To determine the optimal time delay for 
phase space reconstruction, the Average 
Mutual Information (AMI) method was 
employed. The results are illustrated in 
Figure 4, where the AMI function reaches its 
first local minimum at a delay of 2. At this 
point, the mutual information between the 
current and lagged values of the time series 
declines significantly, approaching zero. This 
behavior suggests that a delay of 2 offers a 
balance between redundancy and statistical 
independence of the delayed components.
Hence, a time delay of 2 was selected as 
the optimal value for reconstructing the 
phase space of the discharge time series. 
This choice ensures the unfolding of the 
system's hidden nonlinear dynamics in 
a manner that avoids over-correlation 
and allows for the revelation of potential 
chaotic behavior embedded in the 
hydrological system [34].

Figure 4) Average Mutual Information (AMI) of the 
monthly discharge time series from the Gilvan Sub-
Watershed, Zanjan Province, Iran

Embedding Dimension
To determine the appropriate embedding 
dimension, the False Nearest Neighbors 
(FNN) method was applied. As illustrated in 
Figure 5, the percentage of false neighbors 
decreases as the embedding dimension 
increases, and the slope of the curve 
approaches zero at dimension 6. Beyond this 
point, the changes become negligible, and 
the percentage of false neighbors remains 
nearly constant. This pattern indicates 
that, at dimension 6, the phase space has 
been sufficiently unfolded, resulting in an 
adequate reconstruction of the system's 
dynamics.
In lower dimensions (less than 6), the 
projection of the time series into a reduced-
dimensional space leads to the emergence 
of false neighbors due to an improper 
mapping of the system’s nonlinear dynamics 
[29]. Conversely, increasing the dimension 
beyond six yields minimal improvements 
and may even introduce unnecessary noise. 
Therefore, selecting six as the optimal 
embedding dimension ensures that the 
reconstructed phase space accurately 
captures the system's true dynamics while 
avoiding overfitting and the incorporation 
of spurious data, which could arise from an 
excessively high embedding dimension.

Figure 5) False Nearest Neighbors (FNN) plot for 
determining the optimal embedding dimension.

Phase Space Reconstruction
Figure 6 presents the phase space 
reconstruction of the river discharge in both 
two-dimensional and three-dimensional 
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forms, using a time delay of two months. 
The observed patterns in the reconstructed 
phase space indicate a complex and nonlinear 
structure. The points are not randomly 
scattered; instead, they cluster in specific 
regions of the phase space, suggesting the 
presence of a strange attractor.
Moreover, the sensitivity to initial conditions is 
evident; minor differences in the initial values of 
the time series result in significantly divergent 
phase trajectories. Additionally, the phase 
trajectories do not follow a fixed line or repetitive 
path; instead, they display intricate and recurring 
patterns that revolve around a structured 
shape. These features include structured yet 
non-repetitive trajectories, sensitivity to initial 
conditions, and the presence of an apparent 
attractor, which are hallmark characteristics of 
chaotic systems [35]. Consequently, these results 
imply that the discharge of the river may exhibit 
chaotic or near-chaotic behavior, which is 
consistent with the dynamics of many natural 
hydrological systems [36].

Figure 6) Reconstructed phase space of the discharge 
time series from the Gilvan Sub-Watershed, Zanjan 
Province, Iran, using optimal parameters (time delay 
τ = 2 months, embedding dimension m = 6).
(Left): 2D projection of the attractor in the plane X(t) vs. 
X(t+2). (Right): 3D phase space plot showing trajectories 
in X(t), X(t+2), X(t+3), where signs of trajectory divergence 
and attractor folding are observable. These features 
indicate sensitivity to initial conditions and the presence of 
a low-dimensional chaotic attractor, despite the projection 
from the full 6D embedding space.

Quantitative Assessment of Chaos
Estimation of the Correlation Dimension
Figure 7 illustrates the log-log plot of the 

correlation integral versus radius for increasing 
embedding dimensions, applied to the river 
discharge time series. The figure displays three 
distinct regions: the sparsity region (small 
values of log(Cr)), the saturation region (large 
values of log(Cr)), and the scaling region (the 
intermediate portion of log(Cr)).
Part B of the figure presents the estimated 
correlation dimension (D₂) as a function of 
increasing embedding dimension. The results 
indicate that for lower embedding dimensions, 
the correlation dimension increases 
gradually, eventually reaching a saturation 
value of approximately 2.3. This saturation 
implies that the attractor's geometry is fully 
unfolded within this dimensional setting and 
does not gain additional complexity with 
further embedding.
A non-integer correlation dimension, 
particularly one that stabilizes, is a strong 
indication of a strange attractor and, 
consequently, chaotic behavior in the river 
discharge dynamics. These findings are 
consistent with established methodologies 
for detecting deterministic chaos in 
nonlinear hydrological systems [35]. 

Figure 7) (A) Correlation integral curves illustrating 
how point clustering in phase space changes with 
radius and embedding dimension. (B) Correlation 
dimension versus embedding dimension, showing 
convergence around 2.3, which suggests a chaotic 
dynamic structure in the discharge time series from 
the Gilvan Sub-Watershed, Zanjan Province, Iran.
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Largest Lyapunov Exponent
The estimated Lyapunov exponents for the 
river discharge time series are presented in 
Figure 8. Initially, the Lyapunov exponents 
increase rapidly, indicating a swift divergence 
of nearby trajectories in phase space. 
Subsequently, the curve enters a linear phase 
and eventually saturates, stabilizing at a 
specific value. The slope of the linear region is 
taken as an estimate of the largest Lyapunov 
exponent, which was found to be +0.08.​
The positive value of the largest Lyapunov 
exponent strongly suggests that the 
discharge dynamics of the river exhibit 
chaotic behavior. This implies that even 
small differences in initial river flow 
conditions may lead to significantly different 
future outcomes, highlighting the inherent 
unpredictability and complexity in the 
river's hydrological dynamics.​
Recent studies have explored advanced 
methods for estimating Lyapunov exponents 
from time series data. For instance, 
Mayora-Cebollero et al. [37] employed deep 
learning techniques to approximate the full 
Lyapunov exponent spectrum from single-
variable time series, demonstrating the 
potential of machine learning in chaotic 
system analysis. Additionally, Ayers et al. 
[38] utilized supervised machine learning to 
estimate local Lyapunov exponents, offering 
a computationally efficient alternative to 
traditional methods.​

Figure 8) Lyapunov exponent for the time series of 
discharge from the Gilvan Sub-Watershed, Zanjan 
Province, Iran.

Table 1 summarizes the key parameters 
derived from the nonlinear analysis, providing 
a quick reference to support the interpretation 
of chaotic behavior in the river discharge series 
from the Gilvan Sub-Watershed.

Discussion
The findings of this study provide compelling 
evidence that the monthly discharge in Gilvan 
Sub-Watershed exhibits characteristics of a 
deterministic chaotic system. Through the use 
of chaos theory—specifically Average Mutual 
Information (AMI), False Nearest Neighbors 
(FNN), correlation dimension, and Lyapunov 
exponent analysis—the underlying nonlinear 
dynamics of the system were revealed. 
The optimal time delay (τ = 2 months) and 
embedding dimension (m = 6) allowed for 
meaningful phase space reconstruction. The 
calculated correlation dimension (D₂ = 2.3) 
indicates a low-dimensional attractor, while 
the positive largest Lyapunov exponent (λ_
max = 0.08) confirms the system’s sensitivity 
to initial conditions, a hallmark of chaos.
Given that our dataset consists of daily 
or coarser temporal resolution data, the 
presence of high-frequency noise is expected 
to be minimal. Moreover, spectral analysis 
indicated no significant trends or noise 
components that would necessitate the 
application of noise-reduction techniques 
such as Singular Spectrum Analysis (SSA). 
However, it is essential to acknowledge that 
chaos theory tools inherently have limitations 
in fully distinguishing deterministic chaos 
from stochastic influences. This limitation 
should be considered when interpreting the 
results.
The Gilvan Sub-Watershed’s slightly lower 
correlation dimension suggests that its 
attractor is less geometrically intricate than 
that of the Niger River [13]. This could be 
attributed to its mountainous topography, 
snowmelt-dominated runoff regime, and 
localized human activities such as upstream 
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water withdrawals and land-use changes. 
Unlike tropical rivers that often exhibit 
high and continuous precipitation [14], the 
Gilvan sub-watershed experiences marked 
seasonal variation in streamflow driven by 
snow accumulation and melt. This seasonal 
intermittency may contribute to more 
structured but still chaotic hydrological 
patterns.
Furthermore, the influence of large-scale 
climate oscillations—particularly the El 
Niño–Southern Oscillation (ENSO)—has 
been shown to enhance nonlinear responses 
in river discharge. Studies such as Zhao et al. 
[5] have illustrated that ENSO-driven rainfall 
anomalies can amplify chaotic behavior 
in streamflow, especially in watersheds 
where precipitation variability is high. The 
Gilvan Sub-Watershed, located in a climate 
transition zone, is highly responsive to such 
interannual variability. This makes it more 
susceptible to dynamic shifts in discharge 
behavior, with small perturbations in 
precipitation or snowmelt potentially 
resulting in vastly different hydrological 
responses. 

The presence of chaotic dynamics in 
river systems is not uniform and is highly 
dependent on the interplay of climatic, 
topographic, and anthropogenic factors. For 
instance, rivers in tropical humid climates 
often exhibit stronger seasonal cycles 
with lower chaotic intensity due to more 
consistent rainfall patterns. In contrast, 
rivers in snowmelt- or rainfall-dominated 
temperate, Mediterranean watersheds, such 
as the Gilvan Sub-Watershed, tend to show 
higher susceptibility to nonlinear behaviors 
due to the delayed and intermittent nature 
of runoff processes. This observation 
aligns with findings by Sivakumar [9], who 
emphasized that chaos is more prominent 
in watersheds where episodic events and 
irregular climatic forcing govern runoff.
From a climatological perspective, the 
observed chaotic behavior may be further 
exacerbated under future climate change 
scenarios. Increasing temperature trends, 
changes in snowpack dynamics, altered 
timing and magnitude of precipitation events, 
and the frequency of extreme hydrological 
events (e.g., droughts and floods) are all 

Table 1) Summary of key parameters used in chaos analysis of the discharge time series from the Gilvan Sub-
Watershed, Zanjan Province, Iran.

Parameter Value Method Used Notes

Time Series Length 1963–2017 - 55 Years of Monthly Data
(No Missing Values)

Time Delay (τ) 2 Months Average Mutual 
Information (AMI) First Minimum of AMI

Embedding Dimension 
(m) 6 False Nearest Neighbors 

(FNN)
Chosen to Minimize False 

Neighbors

Correlation Dimension 
(D₂) 2.3 Grassberger–Procaccia 

Algorithm
Indicates Low-Dimensional 

Attractor

Largest Lyapunov 
Exponent (λₘₐₓ) 0.08 Rosenstein Method Positive Value Confirms 

Deterministic Chaos

Trend in Discharge −0.16 
m³·s⁻¹month-1 Linear Regression Statistically Significant at 99% 

Confidence

Spectral Analysis 
Outcome

No Significant 
Noise Power Spectrum Analysis No Need for Noise Reduction 

(e.g., SSA)
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likely to intensify the complexity of river 
discharge patterns. Milly et al. [39] have 
argued that traditional assumptions of 
stationarity in hydrology are no longer valid 
under nonstationary climate conditions. 
In this context, deterministic chaos offers 
a powerful conceptual framework to 
understand how hydrological systems may 
evolve in response to changing boundary 
conditions.
The implications for water resources 
management are substantial. The presence 
of chaos implies a limited forecasting 
horizon beyond which the reliability of 
predictions declines significantly. This 
presents serious challenges for long-
term planning in water supply, irrigation 
scheduling, dam operation, and flood risk 
reduction. The inadequacy of conventional 
linear time series models—such as ARIMA 
or regression-based methods—in capturing 
such dynamics underscores the need for 
more robust, nonlinear forecasting tools.
Recent studies have demonstrated the 
successful use of chaos-informed nonlinear 
models such as Long Short-Term Memory 
(LSTM) networks and Artificial Neural 
Networks (ANNs) in forecasting streamflow 
in chaotic systems. For instance, Kratzert 
et al. [40] utilized LSTM networks to forecast 
river discharge and showed significant 
improvement in accuracy compared to 
classical models. Similarly, Mosavi et al. 
[41] reviewed a range of ANN applications 
and emphasized their effectiveness in 
hydrological prediction under chaotic and 
uncertain conditions.
From a policy and management perspective, 
dynamic dam operation protocols based on 
real-time inflow anomaly detection have 
proven effective in systems influenced 
by chaotic hydrology. Songsaengrit et al. 
[42]  demonstrated how adaptive reservoir 
operation could mitigate flood risk using 
such data-driven strategies. In another 

case, Kangrang et al. [43] proposed climate-
informed reservoir rule curves that respond 
to ENSO forecasts and nonlinear system 
indicators. These examples support the 
integration of chaos-based diagnostics 
with adaptive infrastructure and real-time 
decision support systems.  Additionally, 
given its upstream location, the Gilvan 
Sub-Watershed contributes seasonally 
significant inflows to the Sefidrood Dam, 
especially during the snowmelt period. 
These inflows are sensitive to both climatic 
and anthropogenic factors, making the sub-
basin’s discharge behavior directly relevant 
to downstream reservoir operations. As a 
result, the nonlinear and potentially chaotic 
nature of flow in this sub-basin could 
influence dam management strategies, 
especially under changing climate and land-
use scenarios.
Recent advances in machine learning and 
hybrid modeling techniques offer promising 
avenues to complement chaos-based 
diagnostics. For example, artificial neural 
networks (ANNs), support vector machines 
(SVMs), and long short-term memory (LSTM) 
networks have demonstrated superior 
performance in forecasting nonlinear time 
series when trained with appropriate 
climatic and hydrological inputs. Integrating 
these data-driven models with chaos theory 
indicators can help extend the predictability 
window and improve real-time decision-
making, especially in data-limited or 
uncertainty-prone environments.
Furthermore, from a systems management 
perspective, the recognition of chaotic 
behavior necessitates the design of adaptive, 
flexible infrastructure and management 
strategies. Multipurpose dams with 
dynamic release protocols, groundwater 
recharge systems, and integrated watershed 
management plans can enhance system 
resilience. Attention must also be given to 
preserving ecological flows and maintaining 
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groundwater sustainability, which are often 
compromised in overly engineered and non-
adaptive systems.
In summary, the application of chaos theory 
to the Gilvan Sub-Watershed has not only 
confirmed the system’s nonlinear and 
sensitive behavior but has also aligned with 
a growing body of international research 
highlighting the ubiquity of chaos in river 
systems. The study contributes to a deeper 
theoretical understanding of hydrological 
complexity while offering practical 
insights for adaptive water management 
in the context of climate variability 
and change.  Furthermore, as discussed 
earlier, anthropogenic interventions—
particularly dam operations and upstream 
water abstractions—can interact with the 
nonlinear dynamics of river discharge. 
These actions may either amplify or dampen 
chaotic responses by modifying the timing, 
magnitude, and variability of streamflow, 
thereby influencing the system’s sensitivity 
to initial conditions.

Conclusion
This study confirmed that the streamflow of 
the Gilvan Sub-Watershed is deterministic 
chaos, as suggested by a positive largest 
Lyapunov exponent (λ_max = 0.08) and a 
finite correlation dimension (D₂ = 2.3). These 
parameters indicate the initial condition 
sensitivity of the system and the presence of 
low-dimensional chaotic dynamics.
Utilization of the phase space reconstruction 
techniques, in conjunction with AMI and 
FNN as a means of optimal parameter 
choice, provided a powerful analytical tool 
for characterizing the nonlinear dynamics of 
the discharge time series. The consequences 
of these findings are particularly far-
reaching for mountainous, snowmelt-
dominated sub-watersheds' water resource 
management. The presence of chaos 
indicates a limited prediction horizon, which 

compounds the difficulty of long-term flood 
control forecasting, reservoir design, and 
water supply reliability. The shortcomings 
of the common linear time series models 
emphasize the value of increased application 
of adaptive, nonlinear modeling techniques. 
While the study neither seeks to generalize 
results beyond the Gilvan Sub-Watershed 
nor seeks to make a necessarily unlimited 
generalizability claim, it does provide an 
educational case example of the promise of 
chaos theory in Iranian river environments. 
With continuous, long-term hydrological 
data being so unusually available in the 
nation, this research acts to complete a gap 
in the application of nonlinear methods 
to Iranian hydrology. Subsequent studies 
may capitalize on these findings through 
the integration of climate indices (e.g., 
ENSO), analysis of land-use change, and 
development of hybrid models for improving 
streamflow forecasting under uncertainty.
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