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Aims: Understanding the dynamic nature of river discharge is essential for effective water
management, particularly in regions subject to climatic and hydrological variability. This
study applies chaos theory to detect nonlinear patterns in the monthly discharge of the
Gilvan Sub-Watershed, a tributary of the Qezel Ozan River in northwestern Iran, integrating
spectral noise diagnostics with implications for adaptive management.

Materials & Methods: Monthly discharge data (1963-2017) from the Gilvan hydrometric
station were analyzed using phase space reconstruction. Optimal parameters—time
delay of 2 months (Average Mutual Information) and embedding dimension of 6 (False
Nearest Neighbors)—were applied. The correlation dimension was estimated using the
Grassberger-Procaccia algorithm, and the largest Lyapunov exponent was computed to
assess system sensitivity.

Findings: A significant decreasing trend in streamflow (p < 0.001) was detected,
averaging 0.16 m3.s'month! over the study period. The correlation dimension (2.3)
indicated a low-dimensional attractor, while the positive largest Lyapunov exponent
(0.08) confirmed sensitivity to initial conditions, a hallmark of chaos. These results
suggest that streamflow dynamics are shaped by variable precipitation, snowmelt,
evaporation, and anthropogenic factors.

Conclusion: The presence of chaos implies fundamental limits to long-term predictability
and supports the need for nonlinear modeling in water management. Recognizing such
complexity is vital for sustainable resource planning under changing climatic conditions.
However, this study did not explicitly assess the mechanical effects of dams or other hydraulic
infrastructure, and its findings may be influenced by data quality and spatial coverage—
issues that warrant further investigation.
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Introduction

Rivers, as integral components of
hydrological and climatic systems, play
an indispensable role in providing fresh
water, sustaining aquatic ecosystems, and
supporting the socio-economic development
of human communities ™. However, surface
flows often exhibit complex and nonlinear
behavior, characterized by highly variable,
irregular, and, in many cases, chaotic
patterns 2. Understanding the inherent
features of river discharge time series,
including the presence or absence of chaotic
behavior, is a crucial step in the sustainable
management of water resources and in
forecasting the impacts of climate change on
hydrological systems 2. This understanding
not only contributes to a better grasp of flow
dynamics but also lays the foundation for
designing more accurate predictive models
and efficient management policies .
The significance of studying river flow
behavior becomes even more pronounced
as neglecting complex, nonlinear patterns
can lead to the development of inefficient
management programs, especially in scenarios
where climate change and human activities
exert increasing pressure on water resources
Bl In this regard, identifying chaotic patterns
in discharge time series can help improve flow
forecasting, flood risk management, and the
formulation of adaptive policies in response
to hydrological variability . This need is
particularly evident in regions with variable
climates and fragile ecosystems, such as the
watersheds in Iran.

Chaos theory provides a theoretical
framework for analyzing nonlinear
dynamical systems where, despite the

presence of deterministic equations, long-
term prediction becomes difficult due to
extreme sensitivity to initial conditions 7],
In this theory, chaotic behavior is identified
through the presence of a strange attractor
in phase space, fractional correlation

dimension, and positive Lyapunov exponent
B, These characteristics indicate that
seemingly random fluctuations within a
system can result from deterministic but
nonlinear dynamics [9,10]. In hydrology,
such behavior often arises from the complex
interactions between climatic factors such as
precipitation and evaporation, topographic
features of the watershed, and human
interventions such as dam construction and
land-use changes UL

Several studies in the field of hydrology have
confirmed the presence of chaotic behavior
in river discharge time series. For example,
Khatibi et al. ! identified chaotic behavior
at the Sogutluhan hydrometric station in
Tiirkiye; Albostan & Onoz ! reported similar
findings in Turkish rivers; Zounemat-
Kermani 2! observed chaos in the Daintree
River of Australia; Ogunjo et al. (3! confirmed
this behavior in the Niger River; Rezaie et al.
141 found similar results for the Sefidrood
River in Iran; and Rolim & de Souza Filho [*°]
reported chaos in Brazilian river watersheds.
These studies demonstrate that chaos theory
tools, such as phase space reconstruction,
correlation dimension analysis, and
Lyapunov exponent estimation, are effective
in identifying nonlinear dynamics of surface
flows. Despite the growing global interest
in applying chaos theory to hydrology, its
implementation in Iranian watersheds
remains limited, primarily due to challenges
related to data continuity, quality, and
the complexity of nonlinear analytical
methods. This study aims to address this
gap by applying chaos diagnostics to a rare,
long-term, and high-quality streamflow
dataset from the Gilvan Sub-Watershed,
which provides an opportunity to explore
the nonlinear dynamics of river systems in
northwestern Iran more reliably.

The Gilvan Sub-Watershed, a tributary of the
Qezel Ozan River and part of the Sefidrood
Basin, offers an ideal case study due to



the availability of consistent hydrological
records (1963-2017), its distinctive
snowmelt-driven regime, and its exposure to
upstream human interventions. In particular,
the basin’s montane setting and strong
seasonal variability in runoff contribute to
nonlinear streamflow behavior, making it
well-suited for chaos-based analysis. These
features underline the novelty of applying
chaos theory tools in this context, where
short or discontinuous datasets have limited
previous studies.

This study addresses several common
limitations in chaos-based hydrological
research by utilizing a continuous 54-
year dataset from the Gilvan Station and

applying rigorous tools such as phase space
reconstruction, correlation dimension,
and Lyapunov exponent analysis. These
methodological strengths reinforce the
reliability of the results and demonstrate
the practical value of chaos theory in
understanding hydrological complexity
in snow-influenced, mountainous sub-
watersheds like Gilvan, where traditional
linear models often fall short.

The primary objective of this study is to
investigate the chaotic behavior of the
discharge time series from the Gilvan Sub-
Watershed, a tributary of the Qezel Ozan
River, using long-term data from the Gilvan
station. Specifically, this research aims to:

Figure 1) Location of the study area within the Sefidrood Watershed, highlighting the Gilvan Sub-Watershed,

Zanjan Province, Iran (Code: 17-033).

The slope across the sub-watershed ranges from 0% to 266.7%, indicating considerable topographic variation.



(1) reconstruct the phase space of the river
flow and identify the presence of a strange
attractor, (2) determine key parameters
such as optimal delay time and embedding
dimension, (3) confirm the presence
or absence of chaos by calculating the
correlation dimension and largest Lyapunov
exponent, and (4) provide insights for
advanced modeling and optimal water
resource management in the watershed.

Materials & Methods

Geographical Setting of the Study Area
This study focuses on the Gilvan Sub-
Watershed, a key hydrological unit within the
Sefidrood Watershed, located in the southern
part of Zanjan Province, which offers a long-
term and consistent daily streamflow record
suitable for nonlinear and chaos analysis!*®l.
Covering an area characterized by varied
topography, the Gilvan Sub-Watershed
features elevations ranging from 300 m to
over 3,000 m ! and slopes varying from
0% to 266.7% (approximately 69°) in steep
mountainous areas, as determined by ArcGIS
slopeanalysis.Itincludesapartial contributing
area of 29.90 km? and a total upstream
drainage area of approximately 4988.32 km?,
with an average elevation of 1,514 m and a
regional slope averaging around 20.5%. These
physiographic  characteristics, combined
with seasonal precipitation patterns, drive
nonlinear and potentially chaotic streamflow
dynamics, making the sub-watershed an
ideal candidate for chaos theory analysis .
Climatically, the area features a temperate,
Mediterranean precipitation regime with
winter-dominant rainfall and significant
snowmelt, receiving approximately 300-800
mm annually "8, Geologically, the watershed
includes a mixture of tertiary volcanic and
intrusive rocks, contributing to the spatial
heterogeneity of runoff generation 9,
Hydrological data for this study were
obtained from the Gilvan hydrometric station

No. 17-033. Daily streamflow records from
1963 to 2017 (54 years) were used without
temporal downsampling to preserve the full
resolution of the nonlinear dynamics

This extended time series is particularly
valuable for capturing the nonlinear
dynamics and potential chaotic patterns in
river discharge ['''%, as it encompasses a
wide range of climatic and anthropogenic
influences, including extreme events such as
floods and droughts.

Figure 1 presents the geographic extent of the
Sefidrood River Watershed in northwestern
Iran and the location of the Gilvan Sub-
Watershed within it. The map also shows the
distribution ofhydrometricstations,including
station No. 17-033, and the slope variation
(%) across the Gilvan Sub-Watershed.
Noise Detection in Hydrological Time Series
In nonlinear and chaotic system analysis, the
presence of noise can significantly obscure
the system's intrinsic properties [**l, Noise
typically appears as random, unpredictable
fluctuations in the data and may mask
genuine chaotic patterns 2%, Given the high
sensitivity of methods such as the Lyapunov
exponent and correlation dimension to data
quality, identifying and mitigating noise is a
critical initial step.

Spectral analysis is a practical approach
for detecting noise in time series [l In
general, a noise-free time series displays a
power spectrum with clear peaks at specific
frequencies, indicating periodic or organized
behavior. In contrast, noisy series—
particularly those affected by white or
colored noise—exhibit either a flat spectrum
(white noise) or a spectrum with a smooth
downward slope (e.g., Brownian noise) 221,
To further verify the presence of colored
noise, the slope of the log-log plot of power
versus frequency was examined: a slope near
-2 suggests Brownian noise, while a slope
around -1 indicates pink noise 2,
Fourier-based spectral analysis was used in



this study to identify noise in the discharge
time series before applying nonlinear
methods. This method decomposes the
time series into its frequency components,
allowing for the detection of hidden patterns
or anomalies as shown in Eq. (1) [24-26],

Z =a, +i[ai cos(2nf,t)+b, sin (2nft)]

=1

Eq. (1)

In Eq. (1), Z, represents the variable under
analysis, and a_, a,, and b, are the Fourier
coefficients, which can be estimated using
the least squares method. Once the Fourier
coefficients are obtained, the periodogram
can be computed. The periodogram can
be represented in various forms, such
as power versus frequency or variance
versus frequency [*%1, After calculating
the periodogram, it can be smoothed to
estimate the spectral density. The smoothed
periodogram serves as an estimate of the
population spectrum [24),

It should be noted that before performing
spectral analysis, detrending the time series
is essential, as trends can significantly affect
the power spectrum ?'#l, Trends usually
appear as low-frequency components with
high power and can mask the effects of noise
and chaotic dynamics. Detrending ensures
that the spectral analysis focuses solely on
the system's intrinsic fluctuations rather
than long-term structural changes that
lie outside the scope of chaotic dynamics.
Therefore, in this study, before conducting
spectral analysis, the trend component was
estimated using a least squares regression
model and subsequently removed from the
original time series.

Phase Space Reconstruction

To reconstruct and visualize the phase space
of the discharge time series from the Gilvan
Sub-Watershed, the time delay embedding
method was employed. This technique,
based on Takens’ Theorem ™71 allows the

hidden dynamics of a complex system to be
reconstructed from a one-dimensional time
series in a multidimensional phase space. The
key parameters in this method are time delay
and embedding dimension, which respectively
define the optimal time interval between data
points and the number of dimensions required
to reveal the system’s dynamics.

Time Delay

The estimation of the time delay (t) for
phase space reconstruction is typically
done using two methods, autocorrelation
or Average Mutual Information (AMI).
The autocorrelation function primarily
examines linear dependencies between
data points, whereas the Average Mutual
Information method can account for
both linear and nonlinear dependencies.
Therefore, when analyzing complex systems
such as hydrological or climatic systems,
which exhibit nonlinear and chaotic
behavior, the AMI method may provide
better performance. The Average Mutual
Information method operates based on
information theory and assesses the amount
of shared information between a time series
and its delayed version. In other words,
this method indicates the probability that
neighboring points, such as x(t) and x(t+t),
are statistically dependent. If P(x(t), x
(t+1)) is the probability distribution of the
points and P(x(t))P(x (t+t)) is their joint
probability distribution, the Average Mutual
Information is calculated as Eq. (2) ©.

AMI = ip (x(O.x(t)log LEOXET)

—_— Eqg. (2
paopeey @)

In the AMI method, the first time delay at
which the mutual information reaches a
local minimum is typically considered the
optimal time delay.

Toensurereproducibilityand methodological
clarity, the nonlinear analysis steps were
implemented using custom MATLAB scripts



written by the authors.

The computation of Average Mutual
Information (AMI) followed the method
described by Fraser and Swinney %, with
probability density estimation performed
using uniform binning and the Freedman-
Diaconis rule for bin width selection.
For the False Nearest Neighbors (FNN)
method, the Euclidean distances between
reconstructed vectors were calculated,
and the proportion of false neighbors was
tracked across dimensions. A threshold
of 10% was used to identify the optimal
embedding dimension.

The correlation dimension was estimated
using the Grassberger-Procaccia algorithm,
and the largest Lyapunov exponent was
calculated using the Rosenstein method,
focusingonshort-termtrajectory divergence.
All analyses were conducted on the monthly
discharge dataset (1963-2017) from the
Gilvan station (Code: 17-033) using MATLAB
R2022a. Although the code is not publicly
available due to its proprietary nature, key
implementation details can be provided
upon request for academic purposes.
Embedding Dimension

To determine a suitable embedding
dimension for reconstructing the phase space
of the discharge time series, the False Nearest
Neighbors (FNN) method was employed.
This method evaluates the dimension in
which discontinuities or inconsistencies in
phase space trajectories are minimized or
eliminated. In other words, if the phase space
is embedded in an appropriate dimension,
the trajectories do not intersect, and the
discontinuities caused by projecting the phase
space into too low a dimension disappear. In
nonlinear dynamical systems such as river
flow—which may exhibit chaotic or near-
chaotic behavior—selecting an appropriate
embedding dimension is essential to prevent
trajectory crossings and to reconstruct the
system's dynamics accurately.

In the False Nearest Neighbors (FNN)
method, the first step involves constructing
delay vectors using the optimal time delay
and a trial embedding dimension mmm.
These vectors are generated from the time
series to represent the system'’s states in the
reconstructed phase space. The delay vector
Y(t) is defined as Eq. (3) .

Y ()= Y(t). Y (t-7),Y(t-27),... Y (t-(m-1)7)]

Eq. (3)

T

The above Eq. illustrates that two key factors
determine the construction of delay vectors,
including the number of components in each
vector, which corresponds to the embedding
dimension (m), and the time interval
between successive components, which is
the time delay (t). Once the delay vectors are
constructed, the r'" nearest neighbor of each
delay vector Y "(t) is identified as Eq. (4) *°.

Eq. (4)

wheret denotesthetime index ofther™ nearest
neighbor to Y ""(t) in the m-dimensional phase
space. The distance between two neighboring
delay vectors is calculated using the Euclidean
norm, as Eq. (5) %81,

~

m-1

Ry =D [Y(ti1)-Y(t,-i1)]

i=0

Eq. (5)

If the vector Y (t) is a true neighbor of Y(t),
this closeness reflects the actual dynamics of
the system. However, if this proximity results
merely from projecting a higher-dimensional
phase space into a lower dimension, then
upon increasing the embedding dimension
from m to m+1, this neighbor will no longer
remain close. Such a neighbor is referred to
as a false nearest neighbor.

When the embedding dimension is increased
from m to m+1, the newly added components
to the delay vectors Y (t) and Y(t) are and



respectively. Consequently, the Euclidean
distance between the two vectors in the
(m+1)-dimensional phase space is calculated
as Eq. (6) 1281,

m

R, = Z[Y(t-i‘r)-Y(tr-i 1:)]2 =R: +[Y(t-m ‘r)-Y(tr-m '1:)]2

m

Eq. (6)

The relative added distance, compared to
the distance between the two delay vectors
in the original m-dimensional space, is
computed as Eq. (7) %8

R> 1.R3 ‘Y(t-mr)-Y(tr-mrn

m+ m —

Eq. (7)

If the value obtained from the equation
above exceeds a predefined threshold, the
neighbor is classified as a false nearest
neighbor. Based on previous research, it is
recommended that this threshold be set
between 10 and 15 29,

This procedure is repeated for delay vectors
constructed with progressively increasing
embedding dimensions until the percentage
of false nearest neighbors approaches zero
or becomes negligibly small. The embedding
dimension at which this occurs is then
selected as the appropriate dimension for
phase space reconstruction.

This method ensures that the phase
space is reconstructed in such a way that
phase trajectories do not intersect, and
the nonlinear dynamic structure of the
system is accurately revealed. Selecting
an appropriate embedding dimension is
essential for subsequent analyses, such as
the computation of Lyapunov exponents.
Construction of Delay Vectors and Phase
Space Plotting

In the next step, using the previously
determined optimal time delay and
embedding dimension, delay vectors are
constructed in phase space based on Eq. (3).
However, for visualization purposes, typically

only two or three components of these vectors
are plotted in a two- or three-dimensional
space, although the actual system dynamics
exist in a higher-dimensional space.

In general, plotting the phase space and
identifying strange attractors facilitates
the recognition of chaotic behaviors. In
systems such as river flow dynamics, such
behavior may indicate sensitivity to initial
conditions, nonlinear responses, and the
influence of climatic and environmental
variables [,

Chaos Analysis

Correlation Dimension

The correlation dimension is one of the
most widely used and fundamental metrics
for identifying and characterizing nonlinear
dynamical systems, particularly chaotic
systems. It helps assess the geometric and
structural complexity of strange attractors
in phase space and is commonly employed to
distinguish between random, deterministic,
and chaotic processes.

In this study, the correlation dimension is
estimated using the correlation integral.
The underlying assumption of this method
is that purely random processes exhibit
an infinite (continuous) dimension, while
chaotic processes possess a finite, often fractal
dimension. Theapproachinvolves constructing
a hypersphere around a reference point in
the phase space and gradually increasing its
radius until it encompasses all points in the
reconstructed attractor.

The correlation integral C(r), for an
m-dimensional phase space, is defined as
Eq.(8) B.

2
C) =li H(-|Y.-Y.
(1) IggN(N_l);j (| Y,-Y )

Eq. (8)

where H is a Heaviside step function, defined
as Eq. (9):

1 if u=0

0 if u<0 Eq. (9)

H(u) = {



In the above expressions, r represents the
radius of the hypersphere centered at Y,
or Yj , and N is the total number of points
in the phase space. For positive values of r,
the correlation integral is related to r by the
following expression (Eq. (10)).

C(r) »ar™

®0, N®¥

Eq. (10)

where a is a constant coefficient, and D, is
the correlation exponent. The correlation
dimension D, is calculated using Eq. (11).

D, = lim log€Cm Eq. (11)
r®0, N®¥ log (r)
In practice, C(r) is plotted against log r; and the
slope of the linear portion of the resulting graph
is estimated using the least squares method
for various embedding dimensions. Then, by
plotting D, versus the embedding dimension,
the nature of the underlying process can be
determined. If D, increases continuously
withoutsaturation as the embedding dimension
increases, the process is random. If the graph
saturates, it suggests a deterministic process.
Furthermore, if the saturated value of D, is non-
integer, the system is considered chaotic.
Lyapunov Exponent
The Lyapunov exponent is a fundamental
indicator used to identify chaotic behavior in
dynamical systems, including river discharge
time series. This exponent quantifies the rate of
divergence between neighboring trajectories
in the reconstructed phase space. In chaotic
systems, the presence of at least one positive
Lyapunov exponent signifies sensitivity
to initial conditions and the nonlinear
deterministic nature of the system [,
The Lyapunov spectrum can be computed
from the reconstructed attractor. While
many existing methods for calculating these
exponents are mathematically intensive and

complex, thealgorithm proposed by Rosenstein
provides a relatively straightforward approach
to estimate the largest Lyapunov exponent
)

To apply the Rosenstein method, a reference
pointY is selected in the phase space, and the
average distance of all neighboring points
s, which lie within a specific radius r of the
reference point, is computed. This process is
repeated for N points and is referred to as
the stretching factor (Eq. (12)) 2.

N
S—ﬁn;m(mZ Sn, S ] Eq. (12)
In Eq. (12), M represents the number of
neighboring points identified around each
reference point Y. By plotting the stretching
factor S(N) against the number of time steps
N, or equivalently against time t=NAt, a
curve is obtained whose linear region's slope
provides an approximation of the largest
Lyapunov exponent. If the estimated A__ is
positive, it serves as strong evidence that the

system exhibits chaotic behavior.

Findings

Streamflow Characteristics and Trend Analysis
Figure 2 illustrates the monthly time series of
the discharge from the Gilvan Sub-Watershed
from 1963 to 2017. During this period, the mean
discharge was approximately 89.7 m3s. The
maximum recorded discharge occurred in April
1968, reaching a peak value of 1206.3 m3s.
Trend analysis of the streamflow data was
conducted using linear regression, which
revealed a statistically significant decreasing
trend at the 99% confidence level (p-value =
0.000). The regression model y=141.4-0.16t
suggests that, on average, the monthly
discharge has decreased by approximately
0.16 m3.s'month! over the study period.
This decline likely reflects the combined
impacts of climate variability, reduced
precipitation, snowmelt changes, upstream



water withdrawals, and land-use alterations.
From a dynamical perspective, the long-
term downward trend indicates evolving
boundary conditions that may influence
the geometry of the reconstructed attractor
and the intensity of chaotic behavior. While
the system still exhibits key features of
deterministic chaos, such as sensitivity to
initial conditions, the reduced variability
may limit predictability horizons. These
findings highlight the necessity of adopting
adaptive, nonlinear models that account for
nonstationarity in river systems, particularly
for long-term water management and
environmental flow assessment.

Figure 2) Monthly time series of river discharge over
the period 1963-2017 from the Gilvan Sub-Watershed,
Zanjan Province, Iran.

Noise Assessment Test

To evaluate the presence or absence of noise
in the time series, spectral analysis was
employed. Given that trends can influence
the outcome of spectral analysis, the original
monthly discharge series from the Gilvan
Sub-Watershed was first detrended. The
detrended time series is illustrated in Figure
3 (A), while the power spectrum of the
detrended data is shown in Figure 3 (B).
The power spectrum reveals three
dominant peaks at frequencies of 0.0833,
0.1667, and 0.25, corresponding to return
periods of 12 months, 6 months, and 4
months, respectively. These peaks confirm
the presence of seasonal patterns and
indicate a strong cyclical structure within

the time series. Such periodic components
are typically associated with natural
hydrological processes, including seasonal
rainfall and snowmelt dynamics.

Figure 3) (A) Detrended monthly streamflow time
series; (B) Power spectral density of the detrended
series; (C) Log-log plot of power spectral density ver-
sus frequency for noise characterization from the Gil-
van Sub-Watershed, Zanjan Province, Iran.

The presence of distinct peaks and significant
variations in power across different
frequencies suggests that the time series
does not follow a white noise process, which
is characterized by a flat, featureless power
spectrum B%  Furthermore, the noticeable
decline in power at higher frequencies also
implies the absence of colored noise such as
Brownian noise (1.f%) or pink noise (1.f1) 33,
To further verify this, the log-log slope of



the power spectrum was computed and is
presented in Figure 3 (C). The estimated
slope is —0.6, which is significantly lower in
magnitude than what is typically expected
for pink noise (-1) or Brownian noise (-2).
This supports the conclusion that the time
series does not contain meaningful colored
noise either. Therefore, the data exhibits a
structured, predictable pattern, making it
well-suited for further nonlinear and chaos-
based analyses.

Phase Space Reconstruction

Time Delay Selection

To determine the optimal time delay for
phase space reconstruction, the Average
Mutual Information (AMI) method was
employed. The results are illustrated in
Figure 4, where the AMI function reaches its
first local minimum at a delay of 2. At this
point, the mutual information between the
current and lagged values of the time series
declines significantly, approaching zero. This
behavior suggests that a delay of 2 offers a
balance between redundancy and statistical
independence of the delayed components.
Hence, a time delay of 2 was selected as
the optimal value for reconstructing the
phase space of the discharge time series.
This choice ensures the unfolding of the
system's hidden nonlinear dynamics in
a manner that avoids over-correlation
and allows for the revelation of potential
chaotic behavior embedded in the
hydrological system [34.

Figure 4) Average Mutual Information (AMI) of the
monthly discharge time series from the Gilvan Sub-
Watershed, Zanjan Province, Iran

Embedding Dimension

To determine the appropriate embedding
dimension, the False Nearest Neighbors
(FNN) method was applied. As illustrated in
Figure 5, the percentage of false neighbors
decreases as the embedding dimension
increases, and the slope of the curve
approaches zero at dimension 6. Beyond this
point, the changes become negligible, and
the percentage of false neighbors remains
nearly constant. This pattern indicates
that, at dimension 6, the phase space has
been sufficiently unfolded, resulting in an
adequate reconstruction of the system's
dynamics.

In lower dimensions (less than 6), the
projection of the time series into a reduced-
dimensional space leads to the emergence
of false neighbors due to an improper
mapping of the system’s nonlinear dynamics
(291 Conversely, increasing the dimension
beyond six yields minimal improvements
and may even introduce unnecessary noise.
Therefore, selecting six as the optimal
embedding dimension ensures that the
reconstructed phase space accurately
captures the system's true dynamics while
avoiding overfitting and the incorporation
of spurious data, which could arise from an
excessively high embedding dimension.

Figure 5) False Nearest Neighbors (FNN) plot for
determining the optimal embedding dimension.

Phase Space Reconstruction

Figure 6 presents the phase space
reconstruction of the river discharge in both
two-dimensional and three-dimensional



forms, using a time delay of two months.
The observed patterns in the reconstructed
phasespaceindicateacomplexand nonlinear
structure. The points are not randomly
scattered; instead, they cluster in specific
regions of the phase space, suggesting the
presence of a strange attractor.

Moreover, the sensitivity to initial conditions is
evident; minor differences in the initial values of
the time series result in significantly divergent
phase trajectories. Additionally, the phase
trajectories do not follow a fixed line or repetitive
path;instead, they display intricate and recurring
patterns that revolve around a structured
shape. These features include structured yet
non-repetitive trajectories, sensitivity to initial
conditions, and the presence of an apparent
attractor, which are hallmark characteristics of
chaotic systems °.. Consequently, these results
imply that the discharge of the river may exhibit
chaotic or near-chaotic behavior, which is
consistent with the dynamics of many natural
hydrological systems [¢],

Figure 6) Reconstructed phase space of the discharge
time series from the Gilvan Sub-Watershed, Zanjan
Province, Iran, using optimal parameters (time delay
T = 2 months, embedding dimension m = 6).

(Left): 2D projection of the attractor in the plane X(t) vs.
X(t+2). (Right): 3D phase space plot showing trajectories
in X(t), X(t+2), X(t+3), where signs of trajectory divergence
and attractor folding are observable. These features
indicate sensitivity to initial conditions and the presence of
a low-dimensional chaotic attractor, despite the projection
from the full 6D embedding space.

Quantitative Assessment of Chaos
Estimation of the Correlation Dimension
Figure 7 illustrates the log-log plot of the

correlation integral versus radius for increasing
embedding dimensions, applied to the river
discharge time series. The figure displays three
distinct regions: the sparsity region (small
values of log(Cr)), the saturation region (large
values of log(Cr)), and the scaling region (the
intermediate portion of log(Cr)).

Part B of the figure presents the estimated
correlation dimension (D;) as a function of
increasing embedding dimension. The results
indicatethatforlowerembeddingdimensions,
the correlation dimension increases
gradually, eventually reaching a saturation
value of approximately 2.3. This saturation
implies that the attractor's geometry is fully
unfolded within this dimensional setting and
does not gain additional complexity with
further embedding.

A non-integer correlation dimension,
particularly one that stabilizes, is a strong
indication of a strange attractor and,
consequently, chaotic behavior in the river
discharge dynamics. These findings are
consistent with established methodologies
for detecting deterministic chaos in
nonlinear hydrological systems 3.

Figure 7) (A) Correlation integral curves illustrating
how point clustering in phase space changes with
radius and embedding dimension. (B) Correlation
dimension versus embedding dimension, showing
convergence around 2.3, which suggests a chaotic
dynamic structure in the discharge time series from
the Gilvan Sub-Watershed, Zanjan Province, Iran.



Largest Lyapunov Exponent

The estimated Lyapunov exponents for the
river discharge time series are presented in
Figure 8. Initially, the Lyapunov exponents
increase rapidly, indicating a swift divergence
of nearby trajectories in phase space.
Subsequently, the curve enters a linear phase
and eventually saturates, stabilizing at a
specific value. The slope of the linear region is
taken as an estimate of the largest Lyapunov
exponent, which was found to be +0.08.
The positive value of the largest Lyapunov
exponent strongly suggests that the
discharge dynamics of the river exhibit
chaotic behavior. This implies that even
small differences in initial river flow
conditions may lead to significantly different
future outcomes, highlighting the inherent
unpredictability and complexity in the
river's hydrological dynamics.

Recent studies have explored advanced
methods for estimating Lyapunov exponents
from time series data. For instance,
Mayora-Cebollero et al. B” employed deep
learning techniques to approximate the full
Lyapunov exponent spectrum from single-
variable time series, demonstrating the
potential of machine learning in chaotic
system analysis. Additionally, Ayers et al.
B8] utilized supervised machine learning to
estimate local Lyapunov exponents, offering
a computationally efficient alternative to
traditional methods.

Figure 8) Lyapunov exponent for the time series of
discharge from the Gilvan Sub-Watershed, Zanjan
Province, Iran.

Table 1 summarizes the key parameters
derived from the nonlinear analysis, providing
a quick reference to support the interpretation
of chaotic behavior in the river discharge series
from the Gilvan Sub-Watershed.

Discussion

The findings of this study provide compelling
evidence that the monthly discharge in Gilvan
Sub-Watershed exhibits characteristics of a
deterministic chaotic system. Through the use
of chaos theory—specifically Average Mutual
Information (AMI), False Nearest Neighbors
(FNN), correlation dimension, and Lyapunov
exponent analysis—the underlying nonlinear
dynamics of the system were revealed.
The optimal time delay (t = 2 months) and
embedding dimension (m = 6) allowed for
meaningful phase space reconstruction. The
calculated correlation dimension (D, = 2.3)
indicates a low-dimensional attractor, while
the positive largest Lyapunov exponent (A_
max = 0.08) confirms the system’s sensitivity
to initial conditions, a hallmark of chaos.
Given that our dataset consists of daily
or coarser temporal resolution data, the
presence of high-frequency noise is expected
to be minimal. Moreover, spectral analysis
indicated no significant trends or noise
components that would necessitate the
application of noise-reduction techniques
such as Singular Spectrum Analysis (SSA).
However, it is essential to acknowledge that
chaostheorytoolsinherently havelimitations
in fully distinguishing deterministic chaos
from stochastic influences. This limitation
should be considered when interpreting the
results.

The Gilvan Sub-Watershed’s slightly lower
correlation dimension suggests that its
attractor is less geometrically intricate than
that of the Niger River 3. This could be
attributed to its mountainous topography,
snowmelt-dominated runoff regime, and
localized human activities such as upstream



Table 1) Summary of key parameters used in chaos analysis of the discharge time series from the Gilvan Sub-

Watershed, Zanjan Province, Iran.

Parameter Value Method Used Notes
. . 55 Years of Monthly Data
Time Series Length 1963-2017 - (T¥lo Dt Tilies)
. Average Mutual . ..
Time Delay (t) 2 Months Information (AMI) First Minimum of AMI
Embedding Dimension 6 False Nearest Neighbors Chosen to Minimize False
(m) (FNN) Neighbors
Correlation Dimension Grassberger-Procaccia Indicates Low-Dimensional
2.3 .
(D2) Algorithm Attractor
Largest Lyapunov . Positive Value Confirms
Exponent (Apax) i e Deterministic Chaos
-0.16 Statistically Significant at 99%

Trend in Dischar
end scharge m3-s~*month’

Spectral Analysis
Outcome

No Significant
Noise

Linear Regression

Power Spectrum Analysis

Confidence

No Need for Noise Reduction
(e.g., SSA)

water withdrawals and land-use changes.
Unlike tropical rivers that often exhibit
high and continuous precipitation ¥, the
Gilvan sub-watershed experiences marked
seasonal variation in streamflow driven by
snow accumulation and melt. This seasonal
intermittency may contribute to more
structured but still chaotic hydrological
patterns.

Furthermore, the influence of large-scale
climate oscillations—particularly the El
Nifio-Southern Oscillation (ENSO)—has
been shown to enhance nonlinear responses
in river discharge. Studies such as Zhao et al.
Bl have illustrated that ENSO-driven rainfall
anomalies can amplify chaotic behavior
in streamflow, especially in watersheds
where precipitation variability is high. The
Gilvan Sub-Watershed, located in a climate
transition zone, is highly responsive to such
interannual variability. This makes it more
susceptible to dynamic shifts in discharge
behavior, with small perturbations in
precipitation or snowmelt potentially
resulting in vastly different hydrological
responses.

The presence of chaotic dynamics in
river systems is not uniform and is highly
dependent on the interplay of climatic,
topographic, and anthropogenic factors. For
instance, rivers in tropical humid climates
often exhibit stronger seasonal cycles
with lower chaotic intensity due to more
consistent rainfall patterns. In contrast,
rivers in snowmelt- or rainfall-dominated
temperate, Mediterranean watersheds, such
as the Gilvan Sub-Watershed, tend to show
higher susceptibility to nonlinear behaviors
due to the delayed and intermittent nature
of runoff processes. This observation
aligns with findings by Sivakumar °!, who
emphasized that chaos is more prominent
in watersheds where episodic events and
irregular climatic forcing govern runoff.

From a climatological perspective, the
observed chaotic behavior may be further
exacerbated under future climate change
scenarios. Increasing temperature trends,
changes in snowpack dynamics, altered
timingand magnitude of precipitation events,
and the frequency of extreme hydrological
events (e.g., droughts and floods) are all



likely to intensify the complexity of river
discharge patterns. Milly et al. B° have
argued that traditional assumptions of
stationarity in hydrology are no longer valid
under nonstationary climate conditions.
In this context, deterministic chaos offers
a powerful conceptual framework to
understand how hydrological systems may
evolve in response to changing boundary
conditions.

The implications for water resources
management are substantial. The presence
of chaos implies a limited forecasting
horizon beyond which the reliability of
predictions declines significantly. This
presents serious challenges for long-
term planning in water supply, irrigation
scheduling, dam operation, and flood risk
reduction. The inadequacy of conventional
linear time series models—such as ARIMA
or regression-based methods—in capturing
such dynamics underscores the need for
more robust, nonlinear forecasting tools.
Recent studies have demonstrated the
successful use of chaos-informed nonlinear
models such as Long Short-Term Memory
(LSTM) networks and Artificial Neural
Networks (ANNSs) in forecasting streamflow
in chaotic systems. For instance, Kratzert
et al. “" utilized LSTM networks to forecast
river discharge and showed significant
improvement in accuracy compared to
classical models. Similarly, Mosavi et al.
11 reviewed a range of ANN applications
and emphasized their effectiveness in
hydrological prediction under chaotic and
uncertain conditions.

From a policy and management perspective,
dynamic dam operation protocols based on
real-time inflow anomaly detection have
proven effective in systems influenced
by chaotic hydrology. Songsaengrit et al.
42l demonstrated how adaptive reservoir
operation could mitigate flood risk using
such data-driven strategies. In another

case, Kangrang et al. 3! proposed climate-
informed reservoir rule curves that respond
to ENSO forecasts and nonlinear system
indicators. These examples support the
integration of chaos-based diagnostics
with adaptive infrastructure and real-time
decision support systems. Additionally,
given its upstream location, the Gilvan
Sub-Watershed contributes  seasonally
significant inflows to the Sefidrood Dam,
especially during the snowmelt period.
These inflows are sensitive to both climatic
and anthropogenic factors, making the sub-
basin’s discharge behavior directly relevant
to downstream reservoir operations. As a
result, the nonlinear and potentially chaotic
nature of flow in this sub-basin could
influence dam management strategies,
especially under changing climate and land-
use scenarios.

Recent advances in machine learning and
hybrid modeling techniques offer promising
avenues to complement chaos-based
diagnostics. For example, artificial neural
networks (ANNSs), support vector machines
(SVMs), and long short-term memory (LSTM)
networks have demonstrated superior
performance in forecasting nonlinear time
series when trained with appropriate
climatic and hydrological inputs. Integrating
these data-driven models with chaos theory
indicators can help extend the predictability
window and improve real-time decision-
making, especially in data-limited or
uncertainty-prone environments.
Furthermore, from a systems management
perspective, the recognition of chaotic
behavior necessitates the design of adaptive,
flexible infrastructure and management
strategies. =~ Multipurpose dams  with
dynamic release protocols, groundwater
recharge systems, and integrated watershed
management plans can enhance system
resilience. Attention must also be given to
preserving ecological flows and maintaining



groundwater sustainability, which are often
compromised in overly engineered and non-
adaptive systems.

In summary, the application of chaos theory
to the Gilvan Sub-Watershed has not only
confirmed the system’s nonlinear and
sensitive behavior but has also aligned with
a growing body of international research
highlighting the ubiquity of chaos in river
systems. The study contributes to a deeper
theoretical understanding of hydrological
complexity = while offering practical
insights for adaptive water management
in the context of climate variability
and change. Furthermore, as discussed
earlier, anthropogenic interventions—
particularly dam operations and upstream
water abstractions—can interact with the
nonlinear dynamics of river discharge.
These actions may either amplify or dampen
chaotic responses by modifying the timing,
magnitude, and variability of streamflow,
thereby influencing the system’s sensitivity
to initial conditions.

Conclusion

This study confirmed that the streamflow of
the Gilvan Sub-Watershed is deterministic
chaos, as suggested by a positive largest
Lyapunov exponent (A_max = 0.08) and a
finite correlation dimension (D, = 2.3). These
parameters indicate the initial condition
sensitivity of the system and the presence of
low-dimensional chaotic dynamics.
Utilization of the phase space reconstruction
techniques, in conjunction with AMI and
FNN as a means of optimal parameter
choice, provided a powerful analytical tool
for characterizing the nonlinear dynamics of
the discharge time series. The consequences
of these findings are particularly far-
reaching for mountainous, snowmelt-
dominated sub-watersheds' water resource
management. The presence of chaos
indicates a limited prediction horizon, which

compounds the difficulty of long-term flood
control forecasting, reservoir design, and
water supply reliability. The shortcomings
of the common linear time series models
emphasize the value of increased application
of adaptive, nonlinear modeling techniques.
While the study neither seeks to generalize
results beyond the Gilvan Sub-Watershed
nor seeks to make a necessarily unlimited
generalizability claim, it does provide an
educational case example of the promise of
chaos theory in Iranian river environments.
With continuous, long-term hydrological
data being so unusually available in the
nation, this research acts to complete a gap
in the application of nonlinear methods
to Iranian hydrology. Subsequent studies
may capitalize on these findings through
the integration of climate indices (e.g.,
ENSO), analysis of land-use change, and
development of hybrid models for improving
streamflow forecasting under uncertainty.
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