Soil Physico-Chemical Properties and Below-Ground Carbon Storage: Insights from Natural Versus Plantation Forests in Northern Iran

Authors
1 M.Sc. Student, Faculty of Desert studies, Semnan University, Semnan, Iran.
2 Ph.D., Dept. of Arid Land Forestry, Faculty of Desert studies, Semnan University, Semnan, Iran. Post Address: Faculty of desert studies, Semnan university, Semnan, Iran
3 Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
4 Dept. of Arid Land Forestry, Faculty of Desert studies, Semnan University, Semnan, Iran.
Abstract
Aims: This study aimed to compare soil physico-chemical properties and evaluate below-ground carbon storage (soil and fine roots) in three plantations of Quercus castaneifolia C.A.M., Alnus subcordata C.A.M., and Acer velutinum Bioss., adjacent to a natural forest stand in the Hyrcanian region. There is limited site-specific data on carbon storage and its economic value in pure native plantation stands of Hyrcanian forests.

Materials & Methods: Across each stand (three plantations and one natural forest), five 400 m² (20 × 20 m) sample plots were established (20 plots in total). Composite soil samples were collected from two depths (0-5 and 5-15 cm) at five points per plot, yielding 10 composite samples per stand. The Laboratory analyses comprised soil texture, pH, organic carbon (OC), total nitrogen (TN), moisture content, and fine root biomass. The carbon storage in soil and fine roots was converted to CO₂ equivalents, followed by economic assessment based on a rate of USD 75 per ton. Finally, the soil parameters and the economic value of carbon storage were compared among the stands using one-way ANOVA followed by LSD test and different depths using independent T-test methods.

Findings: Soil moisture in our study site (29.37–46.80%) was significantly lower (P ≤ 0.01) in Q. castaneifolia stands. Both organic carbon (2.23–5.62%) and pH (5.94–6.36) varied significantly (P ≤ 0.01) among stands at both depths, while total nitrogen (0.12–0.25%) was highest in A. subcordata and lowest in Q. castaneifolia. Furthermore, the natural forest stand showed the highest root biomass values at both depths. Soil carbon storage correlated positively with bulk density (R² = 0.32) and moisture (R² = 0.38). Total below-ground carbon storage (0–15 cm) differed significantly (P ≤ 0.05), ranking as natural forest (99.40 t.ha⁻¹) and A. velutinum (95.18 t.ha⁻¹) > A. subcordata (81.72 t.ha⁻¹) > Q. castaneifolia (70.68 t.ha⁻¹). The economic values of CO₂ storage per hectare were USD 27,345 (natural forest), USD 26,197 (A. velutinum), USD 23,044 (A. subcordata), and USD 19,453 (Q. castaneifolia).

Conclusion: Acer velutinum demonstrated below-ground carbon storage levels comparable to those of natural forests, suggesting that this species should be prioritized in future reforestation projects aimed at maximizing carbon storage. The key drivers of soil bulk density and moisture content play a critical role in carbon storage in soil. However, further research is necessary to fully assess carbon stocks, including aboveground biomass (e.g., tree trunks and litter), to obtain a comprehensive understanding of the storage potential of these ecosystems.
Keywords

Subjects


1. Gao R., Chuai X., Ge J., Wen J., Zhao R., Zou T. An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China. Land Use Pol. 2022; 116: 106057. https://doi.org/10.1016/j.landusepol.2022.106057
2. FAO. Overcoming water challenges in agriculture. The State of Food and Agriculture. 2020. Rome, Italy. 210p. https://doi.org/10.4060/cb1447en
3. Russo F., Maselli G., Nesticò A. Forest ecosystem services: economic evaluation of carbon sequestration on a large scale. Valori e Valutazioni. 2023; 33: 17-30. http://doi.org/10.48264/VVSIEV-20233303
4. Moshki A., Kianian M. K. Ecology and Forest soil management. 1. Semnan: Semnan University; 2014.
5. Sagheb-Talebi K., Sajedi T., Pourhashemi M. Forests of Iran: A treasure from the past, a hope for the future. Springer Netherlands. 2014; 2557.
6. Marvi-Mohadjer M. R. Silviculture. Tehran. University of Tehran press. 2010; 1: 400 p.
7. Ghazavi R, Ebrahimi H. Estimation of Artificial Groundwater Recharge by Flood Water Spreading System in an Arid Region Using Inverse Modeling and SCS Method; A case Study of Mosian Plain. ECOPERSIA. 2018; 6(3) :187-194. http://ecopersia.modares.ac.ir/article-24-16255-en.html
8. Hasegawa T., Fujimori S., Ito A., Takahashi K. Careful selection of forest types in afforestation can increase carbon sequestration by 25% without compromising sustainability. Com. Ear. Env. 2024; 5: 171. https://doi.org/10.1038/s43247-024-01336-4
9. Haghdoust N., Akbarinia M., Hoseini S. M., Varamesh S. The impact of replacing degraded forests in the north with afforestation on soil fertility and carbon sequestration. Journal of Environmental Studies. 2012; 38(3): 135-146. http://doi.org/10.22059/JES.2012.29155
10. Ostadhashemi R., Rostami Shahraji T., Roehle H., Mohammadi Limaei S. Estimation of biomass and carbon storage of tree plantations in northern Iran. J. For. Sci. 2014; 60 (9): 363-371. http://doi.org/10.17221/55/2014-JFS
11. Badehiyan Z., Mansouri M., Foshat M., Fakhari M. A., Hoseini S. M. Investigation on the soil carbon sequestration in natural forest and different plantation types (case study: Chamestan forest, Mazandaran). For. Woo. Pro. 2016; 69(3): 523-534. http://doi.org/10.22059/jfwp.2016.59892
12. Karami M., Rostami A., Heydari M. Carbon sequestration and its relation with some physical and chemical characteristics in soil of natural oak forest and afforestation in Ilam county. J. Env. Sci. Tec. 2019; 21(10): 185-199. http://doi.org/10.22034/jest.2019.28047.3700
13. jafarisarabi H., pilehvar B., Abrarivajari K., Waezmousavi S. Changes in Carbon sequestration and some edaphic traits in forest types of central Zagros (Case Study: The forests of Lorestan Province). Eco. Iran For. 2023; 9(17): 142-151. http://doi.org/10.52547/ifej.9.17.142
14. Varamesh S., Hosseini S. M., Abdi N., Akbarinia M. Increment of soil carbon sequestration due to forestation and its relation with some physical and chemical factors of soil. Iranian J. For. 2010; 2(1): 25-35. http://doi.org/10.5555/20103207378
15. Teng Y., Zhan J., Su M., Xu C. Effects of climate and afforestation on carbon sequestration change in northern China. Lan. Deg. & Dev. 2023; 34(13): 4109-4122. https://doi.org/10.1002/ldr.4744
16. Moradi M., Moradi G. Carbon Sequestration of Mediterranean Tree Species in the Zagros Forest of Iran. ECOPERSIA. 2024; 12(4): 351-361. http://ecopersia.modares.ac.ir/article-24-76872-en.html
17. Anonymous. Book review of Darabkola forestry plan. The Forests and Rangelands, 82p.
18. Asadiyan M., Hojjati S. M., Pourmajidian M. R., Fallah A. Impact of Different Land-use/Land Cover Types on Soil Quality in Alandan Forest, Sari. Phys. Geo. Res. Quarterly. 2013; 45(3): 65-76. http://doi.org/10.22059/jphgr.2013.35835
19. Paul K. I., Polglase P. J., Nyakuengama J., Khanna P. Change in soil carbon following afforestation. For. Eco. Man. 2002; 168(1-3): 241-57. https://doi.org/10.1016/S0378-1127(01)00740-X
20. Chen H., Rahmati M., Montzka C., Gao H., Vereecken H. Soil physicochemical properties explain land use/cover histories in the last sixty years in China. Geoderma. 2024; 446: 116908. https://doi.org/10.1016/j.geoderma.2024.116908
21. Day P. R. Particle Fractionation and Particle-Size Analysis. Methods of soil analysis: part 1 physical and mineralogical properties, including statistics of measurement and sampling. 1965; 9: 545-567. https://doi.org/10.2134/agronmonogr9.1.c43
22. Blake G. R., Hartge K. H. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods. 1986; 5: 363-75. https://doi.org/10.2136/sssabookser5.1.2ed.c13
23. Nielsen S. S. Determination of moisture content. In Food analysis laboratory manual. 2009 (pp. 17-27). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-1463-7_3
24. Jafarihaghighi M. Sampling and analysis of important physical and chemical soil analysis. Neda Zoha Press. Tehran, Iran; 2003.
25. Walkley A. J. Standard operating procedure for soil organic carbon Walkley-Black method. Food Agric. Organ. United Nations. 1934; 1: 27. https://openknowledge.fao.org/handle/20.500.14283/ca7471en
26. Kirk P. L. Kjeldahl method for total nitrogen. Analytical chemistry. 1950; 22(2): 354-358. https://doi.org/10.1021/ac60038a038
27. Neatrour M. A., Jones R. H., Golladay S. W. Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian J. For. Res. 2005; 35(12): 2934-2941. https://doi.org/10.1139/x05-217
28. Zhong L, Qiguo Z. Organic carbon content and distribution in soils under different land uses in tropical and subtropical China. Plant and soil. 2001; 231: 175-185. https://doi.org/10.1023/A:1010350020951
29. Baluee, A., Hojati, S. M., Asadi, H., Asadian, M. Effect of plant communities of the Darabkola research and educational forest on Carbon stored in soil and above ground biomass. Forest Research and Development, 2023; 9(2): 189-204. http://doi.org/10.30466/jfrd.2023.54505.1648
30. Flora G., Athista G., Derisha L., Devi D., Initha M., & Shibani W. Estimation of Carbon Storage in the Tree Growth of St. Mary's College (Autonomous) Campus, Thoothukudi, Tamilnadu, India. JETIR. 2018; 5, 260-266. www.jetir.org/papers/JETIR1808519.pdf
31. Vishnu P., & Patil S. S. Carbon storage and sequestration by trees in and around University Campus of Aurangabad City, Maharashtra. International Journal of Innovative Research in Science, Engineering and Technology. 2016; 5(4), 5459-5468. https://doi.org/10.15680/IJIRSET.2016.0504179
32. Postic S., Clément M. Global carbon account 2019, Paris, (2019). https://www.i4ce.org/wp-content/uploads/i4ce-PrixCarbon-VA.pdf
33. Ramstein C., Dominioni G., Ettehad S. State and trends of carbon pricing 2019. The World Bank. Washington, DC. 2019. http://doi.org/10.1596/978-1-4648-1435-8
34. Korkanç S. Y. Effects of afforestation on soil organic carbon and other soil properties. CATENA. 2014; 123: 62-69. https://doi.org/10.1016/j.catena.2014.07.009
35. Oztas T., Koc A., Comakli B. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands. J. Ari. Env. 2003; 55(1): 93-100. https://doi.org/10.1016/S0140-1963(02)00267-7
36. Hashemi S. A., Hojati S. M., Hoseiny Nasr S. M., Asadyan M., Tafazoli M. Studying soil physical, chemical and net Nitrogen mineralization in plantation and natural stands in Darabkola Forest (Sari). For. Res. and Dev. 2017; 3(2): 119-132. https://jfrd.urmia.ac.ir/article_20287_en.html
37. Moshki A., Nouri E., Matinizadeh M. Soil Bio-physicochemical Properties Changes in Response to Grazing Intensity and Seasonal Variations in an Arid Rangeland Ecosystem of Iran. ECOPERSIA 2024; 12 (3) :307-316
http://ecopersia.modares.ac.ir/article-24-76203-en.html
38. Moshki A., Nouri E., Soleyman Dehkordi N. The pattern of soil carbon sequestration changes regarding physico-chemical soil properties (Case study: Semnan Sokan forest park). Iranian J. of For. and Pop. Res. 2017; 25(2): 244-253. http://doi.org/10.22092/ijfpr.2017.111759
39. Nobakht A., Pourmajidian M., Hojjati S. M. A comparison of soil carbon sequestration in hardwood and softwood monocultures (case study: Dehmian Forest Management Plan, Mazindaran). Iranian J. of For. 2011; 3(1): 13-23. http://www.sid.ir/en/ViewPaper.asp?ID=204283&varStr=2;NOBAKHT%20A.,POURMAJIDIAN%20M.,HOJJATI%20S.M.;IRANIAN%20JOURNAL%20OF%20FOREST;SPRING%202011;3;1;13;23
40. Rhoades C., Binkley D. Factors influencing decline in soil pH in Hawaiian Eucalyptus and Albizia plantations. For. Eco. and Man. 1996; 80(1-3): 47-56. https://doi.org/10.1016/0378-1127(95)03646-6
41. Yamashita N., Ohta S., Hardjono A. Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. For. Eco. and Man. 2008; 254(2): 362-370. https://doi.org/10.1016/j.foreco.2007.08.012
42. Kiasari S. M., Sagheb-Talebi K., Rahmani R., Adeli E., Jafari B., Jafarzadeh H. Quantitative and qualitative evaluation of plantations and natural forest at Darabkola, east of Mazandaran. Iranian J. of For. and Pop. Res. 2010; 8(3): 337-351. https://ijfpr.areeo.ac.ir/article_107687.html?lang=en
43. Karami-Kordalivand, P., Hosseini, S. M., Rahmani, A., Mokhtari, J. Effects of pure and mixed Caucasian alder (Alnus subcordata C. A. Mey.) and eastern cottonwood (Populus deltoides Marsh.) plantations on carbon sequestration and some physical and chemical soil properties. Iranian Journal of Forest and Poplar Research, 2015; 23(3): 402-412. http://doi.org/10.22092/ijfpr.2015.105647
44. Parsapour M. K., Kooch Y., Hosseini S. M., Alavi S. J. Quantitative evaluation of soil carbon and nitrogen dynamics under oak and alder‎‎ afforestations‎. For. Res. and Dev. 2021; 7(2): 235-248. http://doi.org/10.30466/jfrd.2021.121025
45. Helmisaari H-S, Saarsalmi A, Kukkola M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant and Soil. 2009; 314: 121-132. https://doi.org/10.1007/s11104-008-9711-4
46. Alazmani M., Hojati S. M., Waez-Mousavi S. M., Tafazoli M. Effect of alder plantation age on soil carbon sequestration. For. Res. and Dev. 2021; 7(2): 279-291. http://doi.org/10.30466/jfrd.2021.121058
47. Gao Y., Cheng J., Ma Z., Zhao Y., Su J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Annals of For. Sci. 2014; 71: 427-435. https://doi.org/10.1007/s13595-013-0355-z
48. Asghari Aghozgoleh K., Jalilvand H., Asadi H. The effect of refforestation on some soil properties and understory vegetation in Kolt forests of Mazandaran province. J. of Wood and For. Sci. and Tec. 2022; 28(4): 25-43. http://doi.org/10.22069/jwfst.2022.19723.1949
49. Dinakaran J., Krishnayya N. S. R. Variations in type of vegetal cover and heterogeneity of soil organic carbon in affecting sink capacity of tropical soils. Current sci. 2008; 94(9): 1144-1150. http://www.jstor.org/stable/24100694
50. Badehian Z., Mansouri M., Fakhari M. A. Determining the Economic Value of Soil Carbon Sequestration in the Planted Afforested Different Species. Env. Res. 2018; 9(17): 111-120. https://www.iraneiap.ir/article_79308_en.html
51. Khademi A., Kafaki S. B., Mataji A. The role of coppice oak stand in carbon storage and CO2 uptake (Case study: Khalkhal, Iran). Iranian J. of For. and poplar res. 2010; 18(2): 242-252. https://ijfpr.areeo.ac.ir/article_107707_en.html?lang=fa
52. Asghari Aghozgoleh K., Jalilvand H., Asadi H. The impact of reforestation with broad-leaved and coniferous species on soil properties and carbon storage (Case study: Kolet Forest). Env. Sci. 2023; 21(4): 99-112. http://doi.org/10.48308/envs.2023.1300
53. Mahmoudi M., Ramezani-Kakroudi E., Banj-Shafiei A., Salehi A., Pato M., Hoseinzadeh O. The study of soil carbon storage in Lavizan Forest Park, Tehran. For. Res. and Dev. 2021; 7(2): 327-342. http://doi.org/10.30466/jfrd.2021.121009
54. Kooch, Y., Parsapour, M. K. Effect of Caucasian alder (Alnus subcordata C. A. Mey.), Chestnut-leaved oak (Quercus castaneifolia C. A. Mey.) and horizontal cypress (Cupressus sempervirens L. var. horizontalis (Mill.) Gord.) plantation on litter, soil and CO2 emission characters. Iranian J. of For. and Poplar Res, 2017; 25(2): 310-319. http://doi.org/10.22092/ijfpr.2017.111775
55. Chiti T., Certini G., Puglisi A., Sanesi G., Capperucci A., Forte C. Effects of associating a N-fixer species to monotypic oak plantations on the quantity and quality of organic matter in minesoils. Geoderma. 2007; 138(1-2): 162-169. https://doi.org/10.1016/j.geoderma.2006.11.004
56. Soleimanipour S. S., Adeli K., Mafi-Gholami D., Naghavi H. Economic Evaluation of Carbon Sequestration in Zagros Oak Forests (Case Study: The Pahnus Forest habitat, Chaharmahal and Bakhtiari Province). PEC. 2022; 10(20): 185-206. https://pec.gonbad.ac.ir/browse.php?a_code=A-10-742-1&sid=1&slc_lang=en
57. Yousefi M., khoramivafa M., Mahdavi-Damghani A., Mohammadi G., Beheshti-Alagha A. Assessment of carbon sequestration and its economic value in Iranian oak forests: case study Bisetoon protected area. Env. Sci. 2017; 15(3): 123-134. https://envs.sbu.ac.ir/article_97853.html
58. Sheykhoeslami A., Hoseini N. Comparison of carbon sequestration in natural coniferous and deciduous stands (Case study: Marzanabad-Chalous). Nat. Eco. of Iran. 2021; 12(3): 85-100. https://journals.iau.ir/article_689197.html
59. Bordbar S. Estimation of carbon sequestration potential oak coppice stand (Quercus brantii) in kamfirooz (Fars province). PEC. 2020; 7(15): 141-154. https://pec.gonbad.ac.ir/article-1-401-en.pdf
60. Fathi M., Babaei-kafaki S., Kiadaliri H. effects of afforestation on soil carbon sequestration rates in Pardisan park of Tehran. Renewable. Nat. Resources Res. 2015; 6(2): 1-12. https://sid.ir/paper/212238/en