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Aims: This study aimed to compare soil physico-chemical properties and evaluate below-
ground carbon storage (soil and fine roots) in three plantations of Quercus castaneifolia 
C.A.M., Alnus subcordata C.A.M., and Acer velutinum Bioss., adjacent to a natural forest stand 
in the Hyrcanian region. There is limited site-specific data on carbon storage and its economic 
value in pure native plantation stands of Hyrcanian forests.
Materials & Methods: Across each stand (three plantations and one natural forest), five 400 
m² (20 × 20 m) sample plots were established (20 plots in total). Composite soil samples were 
collected from two depths (0-5 and 5-15 cm) at five points per plot, yielding 10 composite 
samples per stand. The Laboratory analyses comprised soil texture, pH, organic carbon (OC), 
total nitrogen (TN), moisture content, and fine root biomass. The carbon storage in soil and 
fine roots was converted to CO₂ equivalents, followed by economic assessment based on a 
rate of USD 75 per ton. Finally, the soil parameters and the economic value of carbon storage 
were compared among the stands using one-way ANOVA followed by LSD test and different 
depths using independent T-test methods.
Findings: Soil moisture in our study site (29.37–46.80%) was significantly lower (P ≤ 0.01) 
in Q. castaneifolia stands. Both organic carbon (2.23–5.62%) and pH (5.94–6.36) varied 
significantly (P ≤ 0.01) among stands at both depths, while total nitrogen (0.12–0.25%) 
was highest in A. subcordata and lowest in Q. castaneifolia. Furthermore, the natural forest 
stand showed the highest root biomass values at both depths. Soil carbon storage correlated 
positively with bulk density (R² = 0.32) and moisture (R² = 0.38). Total below-ground carbon 
storage (0–15 cm) differed significantly (P ≤ 0.05), ranking as natural forest (99.40 t.ha⁻¹) 
and A. velutinum (95.18 t.ha⁻¹) > A. subcordata (81.72 t.ha⁻¹) > Q. castaneifolia (70.68 t.ha⁻¹). 
The economic values of CO₂ storage per hectare were  USD  27,345  (natural  forest),  USD 
26,197 (A. velutinum), USD 23,044 (A. subcordata), and  USD 19,453 (Q. castaneifolia).
Conclusion: Acer velutinum demonstrated below-ground carbon storage levels comparable to 
those of natural forests, suggesting that this species should be prioritized in future reforestation 
projects aimed at maximizing carbon storage. The key drivers of soil bulk density and moisture 
content play a critical role in carbon storage in soil. However, further research is necessary to 
fully assess carbon stocks, including aboveground biomass (e.g., tree trunks and litter), to 
obtain a comprehensive understanding of the storage potential of these ecosystems.
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Introduction
Global warming and the associated climate 
change portends most of the Earth's 
ecosystems. Forests, as the primary sources 
of carbon storage, absorb carbon through 
photosynthesis and store it in living tissues and 
soil. Sustainable forest management, including 
afforestation and reforestation, is thus a key 
strategy for mitigating the impacts of climate 
change worldwide [1]. According to the latest 
global forest assessment by FAO (2020), global 
plantation areas expanded by 123 million 
hectares between 1990 and 2020 [2]. The 
estimation of carbon stored in trees and soil in 
afforested serves as a key metric for assessing 
the economic value of forests in combating 
reducing greenhouse gas emissions [3].
The below-ground carbon storage has higher 
stability compared to carbon stored in aerial 
biomass. Fine roots also play a crucial role 
in the carbon cycle due to their high rates 
of production and decomposition. At the 
same time, by forming stable organic matter 
(such as humus), they make a significant 
contribution to the long-term stabilization 
of carbon in the soil and, subsequently, the 
reduction of greenhouse gas emissions into 
the atmosphere, ultimately reducing the 
effects of climate change worldwide [4]. 
In northern Iran’s Hyrcanian forests, Quercus 
castaneifolia, Alnus subcordata, and Acer 
velutinum are ecologically and economically 
significant species. Quercus castaneifolia, 
a light-demanding, drought-tolerant oak, 
thrives at low to mid-elevations and is 
prized for its high-quality timber [5]. Alnus 
subcordata, a fast-growing nitrogen-fixing 
species, dominates riparian and humid zones. 
At the same time, Acer velutinum, a shade-
tolerant maple, prefers deep, moist soils and 
is widely used in furniture production [6].
The type of species chosen for afforestation 
can impact soil pH, microbial activity, and 
the levels of essential nutrients, which 
are crucial for achieving sustainable soil 

fertility and forest management outcomes 
[7]. Furthermore, a considerate selection of 
tree species in reforestation projects can 
enhance soil carbon storage by 25%, which 
would be beneficial in mitigating the severe 
effects of climate change on the Earth [8].
Globally, studies have evaluated carbon 
storage in natural and planted forests. 
For example, Haghdoust et al. [9] reported 
105 and 102 t.ha⁻¹ of carbon in 18-year-
old Acer velutinum and Alnus subcordata 
plantations, respectively, in Mazandaran, 
Iran. Ostadhashemi et al. [10] found 52, 
45, and 36 t.ha⁻¹ of aboveground carbon 
in 12-year-old Alnus subcordata, Acer 
velutinum, and Quercus castaneifolia stands 
in Hyrcanian forests. Comparative studies 
highlight disparities, as natural forests 
often outperform plantations, as evidenced 
by higher carbon stocks in natural stands 
compared to those of Cryptomeria japonica 
L., Cupressus sempervirens L., Pinus taeda 
L., and Acer pseudoplatanus L. plantations 
[11]. Similarly, Quercus brantii Lindl. stored 
higher soil carbon (29.45 t.ha⁻¹) than Pinus 
eldarica Medw. and Cupressus arizonica 
Greene. in Ilam, Iran [12]. Drivers of carbon 
storage also vary, with studies reporting 
correlations with nitrogen and soil moisture 
[13, 14], texture and bulk density [15], or pH [16]. 
Despite extensive global research, there is a 
lack of site-specific data on carbon storage 
and its economic value in pure native 
plantation stands of Hyrcanian forests. This 
study examines 30-year-old plantations of 
Quercus castaneifolia, Alnus subcordata, and 
Acer velutinum in Darabkola, Sari, northern 
Iran, with two objectives: (1) to compare 
soil physicochemical properties and below-
ground carbon storage (soil and fine roots) 
among stands, and (2) to analyze relationships 
between soil properties and carbon stocks. 
We hypothesize that natural forests exhibit 
superior soil quality and carbon storage 
capacity compared to reforested stands.
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Materials & Methods
The study area is situated in Darabkola, 
southeast of Sari in Mazandaran Province 
(Figure 1), at an elevation of 330 m above mean 
sea level (Longitude 54° 14′ E and Latitude 
36° 28′ N). The mean annual temperature 
in this area is 16.3°C, and the mean annual 
precipitation is 724 mm. Geologically, the 
area is characterized by marl-dominated 
parent material with gentle slopes (0–5%).
The plantations in this area were established 
in 1995 (30 years old), consisting of Quercus 
castaneifolia, Alnus subcordata, and Acer 
velutinum, with 4×4 m spacing (almost 600 
trees per hectare) with an mean coverage of 
5 hectares for each stand. The main goal of 
forestry in this area was initially to restore 
degraded forests and, later, to produce wood 
for the lumber mills surrounding the forest. 
A nearby natural, mixed, uneven-aged forest 

spanning approximately 35 hectares served 
as a control. It is dominated by Carpinus 
betulus L., with associated species including 
Parrotia persica C.A.M., Ulmus glabra Huds., 
Acer velutinum, and Quercus castaneifolia. 
The understory vegetation comprised 
Crataegus microphylla K. Koch., Mespilus 
germanica L., Rubus fruticosus Agg., Viola 
odorata L., Primula vulgaris Huds., Sorghum 
halepense L., and Urtica dioica L [17]. 
After an initial visit to the study area, the 
pure plantation stands and mixed natural 
forests were identified. In each stand, five 
square sample plots of 400 m² (20 × 20 m) 
were established at a sufficient distance 
from boundaries to avoid edge effects. Soil 
samples from each plot were collected 
at five points (the four corners and the 
center) at two depths, 0–5 cm and 5–15 
cm, using metal cylinders with diameters of 

Figure 1) The geographical location of the study area in northern Iran.
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8 cm and lengths of 5 cm and 10 cm [18, 19]. 
The 0–5 cm layer was selected to capture 
surface organic inputs, while the 5–15 cm 
layer represented stabilized soil conditions 
[20]. Soil sampling for physical and chemical 
measurements, including moisture content, 
was conducted in January 2024. The 
samples from each plot were combined by 
depth, resulting in 10 composite samples 
from the two depths in each stand, which 
were then transferred to the laboratory for 
analysis. 
The soil texture was determined using the 
hydrometer method [21], bulk density (BD) 
was measured using the clod method [22], 
moisture content was assessed through 
weighing and drying [23], pH was measured 
using the potentiometric method [24], organic 
carbon (OC) was determined using the 
Walkley-Black method [25], and total nitrogen 
(TN) was measured using the Kjeldahl 
method [26]. Additionally, the fine roots (<2 
mm diameter) were manually separated, 
washed through a 2 mm sieve, oven-dried 
(70°C, 24 h), and weighed [27].
To calculate soil carbon storage, Eq. (1) 
was used [28]. To calculate fine root carbon 
storage, Eq. (2) was used [29]. To convert 
soil carbon storage to CO2, Eq. (3) was 
employed [30, 31].

Cs (g.m-2) = 10000 × C (%) × BD × D 	  Eq. (1)

In this equation, 10,000 is the conversion 
factor (gC.m-2), Cs is the carbon storage (g.m-

2), C is the carbon concentration (%), BD is 
the bulk density (g.cm-3), and D is the soil 
layer thickness (cm).

C (t.ha-1) = Biomass (t.ha-1) × 0.5 	  Eq. (2)

C is the carbon concentration (t.ha-1).

Sequestrated CO2 (t.ha-1) = Stored carbon (t.ha-1) × 3.67
	 Eq. (3)

To evaluate the economic value of stored 
carbon, we referred to economists who 
suggested that the value of carbon should be 
determined over a defined period, with the 
carbon price ranging from 40 to 80 USD per 
ton of CO₂ by 2020 and from 50 to 100 USD per 
ton of CO₂ by 2030 [32, 33]. In our study, the price 
of one ton of CO₂ was considered to be USD 75, 
which is the average of USD 50 and 100. 
For data examination and statistical analysis, 
the normality of the data was first assessed 
using the Kolmogorov-Smirnov test, and the 
homogeneity of variances was tested using 
Levene's test. One-way ANOVA was used to 
compare the mean values of soil variables 
across different forest types, and the LSD test 
was applied for pairwise comparisons, with 
the natural forest serving as the control group. 
Additionally, the independent T-test was 
employed to compare different soil depths. The 
correlation between the data was calculated 
using Pearson’s correlation coefficient. All 
statistical calculations and analyses were 
performed using SPSS version 26 [34].

Findings
- Soil Physical Properties
All four studied stands exhibited a loamy soil 
texture at the 0-5 cm depth, whereas the soil 
texture at the 5-15 cm depth was predominantly 
clay loam. The soil physical variables, including 
sand, silt, clay, and bulk density, did not show 
significant differences across the studied 
stands (P ≤ 0.05, Table 1). However, the soil 
moisture content (WSM), which ranged 
from 29.37 ± 0.53 to 46.80 ± 1.05% at our 
study site, exhibited significant variation (P 
≤ 0.01) among the stands, with the Quercus 
castaneifolia stand showing the lowest values 
(Figure 2). Additionally, significant differences 
were observed between the two depths for 
sand, clay, and moisture content across all four 
investigated stands (P ≤ 0.05). In contrast, no 
significant differences were found for silt and 
bulk density (Table 1, Figure 2).



Yaghoubi Sis M. et al.

ECOPERSIA                                                    	                                                          Summer 2025, Volume 13, Issue 3

257

Figure 2) Weight of soil moisture of soil in the different 
depths at the forest stands.
Mean values within bars followed by different lower-case (0-5 cm) 
and upper-case (5-15 cm) letters indicate significant differences 
among forest stands. *: indicate significant differences between 
soil and depths.

- Soil Chemical Properties
Based on the results, the organic carbon (OC), 
which ranged from 2.23 ± 0.08 to 5.62 ± 0.10%, 
and the pH, ranging from 5.94 ± 0.06 to 6.50 
± 0.07 at our study site, showed significant 
differences (P ≤ 0.01) among the investigated 
stands at both depths (Figure 3). The highest 

OC values were observed in the natural forest 
at both depths, while the lowest values were 
recorded in the Quercus castaneifolia stand. 
The highest pH values were found at the first 
depth in the Acer velutinum stand, while at 
the second depth, the highest pH values were 
observed in the Quercus castaneifolia stand. 
The lowest pH values were observed at both 
depths in the Alnus subcordata stand (Figure 
3). Additionally, the total nitrogen (TN), which 
ranged from 0.12 ± 0.01 to 0.25 ± 0.01% at our 
study site, showed a significant difference only 
at the first depth (P ≤ 0.01), with the highest 
values in the Alnus subcordata stands and 
the lowest in the Quercus castaneifolia stands 
(Figure 3). The OC and TN content in the soil 
exhibited significant differences among all four 
stands across the depths. At the same time, the 
carbon-to-nitrogen (C/N) ratio did not show 
significant differences either among the stands 
or between the depths (Table 2, Figure 3).

Figure 3) Organic carbon (OC), total nitrogen (TN), and pH of soil in different depths at the forest stands.
Mean values within bars followed by different lower-case (0-5 cm) and upper-case (5-15 cm) letters indicate significant differences among 
forest stands. *: indicate significant differences between soil and depths. 
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- Fine Roots Biomass
The fine root biomass at both depths 
was significantly higher (P ≤ 0.01) in the 
natural forest stand. At the same time, Alnus 
subcordata exhibited significantly lower 
values (P ≤ 0.01) at both depths compared 
to the other stands (Table 3).
- Soil and Fine Roots Carbon Storage
At the first depth, the highest soil carbon 
storage was recorded in the natural forest 
stand, while at the second depth, the highest 
soil carbon storage was observed in the Acer 
velutinum stand. The lowest soil carbon 
storage was found at both depths in the 
Quercus castaneifolia stand. In terms of fine 
root carbon, the highest values were observed 
in the Acer velutinum stand at the first depth 
and in the natural forest stand at the second 
depth. Conversely, the lowest fine root carbon 

storage was measured at both depths in the 
Alnus subcordata stand (Table 4).
The results of the Pearson correlation analysis 
between soil properties and soil carbon storage, 
as well as fine root biomass across all studied 
stands, are shown in Table 5. A significant 
positive correlation was found between soil 
carbon storage and bulk density (R² = 0.32), 
as well as between soil carbon storage and soil 
moisture (R² = 0.38). Additionally, fine root 
carbon storage exhibited a significant positive 
correlation with pH (R² = 0.26, Table 5).
- Economic Value of Storage Carbon Dioxide
The highest soil carbon dioxide storage 
was observed at both depths in the Acer 
velutinum and natural forest stands (Figure 
4). Furthermore, the highest root carbon 
dioxide storage was found in the natural 
forest, while the lowest was recorded in 

Table 1) Comparison of means (± standard deviation) of physical variables amongst different stands in two depths.

Forest Stands

 Depth
(cm)

 Soil
Properties

 Quercus
castaneifolia

 Alnus
subcordata  Acer velutinum  Natural

Forest
 Significant

Level

0-5

Sand (%) 40.21±1.23A 42.66±1.30A 44.31±2.10A 44.03±2.07A 0.192ns

Silt (%) 41.72±1.80 41.73±1.13 41.14±2.05 39.81±1.15 0.128ns

Clay (%) 18.07±1.23B 15.61±0.82B 15.54±1.43B 16.16±1.48B 0.532ns

BD (gr.cm-3) 1.80±0.17 1.70±0.11 1.84±0.21 1.73±0.05 0.405ns

5-15

Sand (%) 29.26±2.19B 33.34±2.49B 31.18±1.79B 32.71±0.17B 0.224ns

Silt (%) 41.91±2.11 43.18±1.79 42.34±1.30 41.00±1.00 0.462ns

Clay (%) 28.82±1.80A 25.48±2.30A 26.47±1.06A 26.28±0.63A 0.254ns

BD (gr.cm-3) 1.73±0.13 1.72±0.17 1.89±0.16 1.68±0.10 0.773ns

Mean values within columns followed by different upper-case letters indicate significant differences among the depths of soil. BD: bulk 
density. nsP ≥ 0.05

Table 2) Comparison of means (± standard deviation) of chemical variables amongst different stands in two depths

Forest Stands

 Depth
(cm)

 Soil
Properties

 Quercus
castaneifolia

 Alnus
subcordata

 Acer
 velutinum Natural Forest Significant Level

0-5
C/N

18.11±1.90 20.72±0.69A 21.13±0.71A 21.15±0.23A 0.148ns

5-15 18.52±0.37 17.32±1.74B 18.50±0.33B 18.84±0.56B 0.213ns

Mean values within columns followed by different upper-case letters indicate significant differences among the depths of soil. C/N: organic 
carbon/total nitrogen. nsP ≥ 0.05
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the Alnus subcordata stand (Figure 5). 
The economic value of the stored carbon 
dioxide in soil and root biomass was 
calculated as 27,345 USD.ha-1, 26,197 USD.

ha-1, 23,044 USD.ha-1, and 19,453 USD.ha-1 

for the natural forest, Acer velutinum, Alnus 
subcordata, and Quercus castaneifolia, 
respectively (Figure 6).

Table 4) Comparison of the mean (± standard deviation) of Carbon Storage of soil and fine roots biomass at the 
0-5 cm and 5-15 cm in forest stands.

Forest Stands

Depth 
(cm)

Soil 
Properties

Quercus 
castaneifolia

Alnus 
subcordata

Acer 
velutinum 

Natural 
Forest

Significant 
Level

0-5

Soil Carbon 
Storage (t.ha-1) 31.27±2.33c 39.25±2.63b 44.01±3.25ab 47.28±1.24a 0.006**

Root 
Carbon Storage 

(t.ha-1)
0.29±0.04b 0.15±0.03c 0.79±0.12a 0.77±0.14a 0.000**

5-15

Soil Carbon 
Storage (t.ha-1) 38.72±2.35b 44.02±2.75ab 49.63±2.50a 48.54±2.67a 0.003**

Fine Roots 
Carbon Storage 

(t.ha-1)
0.40±0.07b 0.30±0.05b 0.75±0.09b 2.81±0.34a 0.006**

Mean values within rows followed by different lower-case letters indicate significant differences among forest stands. Mean values within 
columns followed by different upper-case letters indicate significant differences among the depths of soil. **P ≤ 0.01, *P ≤ 0.05, nsP ≥ 0.05

Table 5) Pearson correlation coefficient (R2) between soil and fine roots biomass Carbon Storage with soil 
variables amongst investigated stands.

Depth 
(cm) Soil Variables

0-15 Clay 
(%)

Sand 
(%)

Silt 
(%)

BD 
(g.cm-3) pH TN 

(%)
WSM
 (%) C/N

Soil Carbon 
Storage (t.ha-1) 0.13ns 0.14 ns 0.13 ns 0.32* 0.00ns 0.05 ns 0.38** 0.06 ns

Root Biomass 
Carbon Storage 

(t.ha-1)
0.00ns 0.02ns 0.04ns 0.00ns 0.26* 0.01ns 0.00ns 0.01ns

BD: bulk density, WSM: weight of soil moisture, TN: total nitrogen. **P ≤ 0.01, *P ≤ 0.05, nsP ≥ 0.05

Table 3) Comparison of means (± standard deviation) of fine roots biomass amongst different stands in two depths.

Forest Stands

Depth 
(cm)

Soil 
Properties

Quercus 
castaneifolia

Alnus 
subcordata

Acer 
velutinum 

Natural 
Forest

Significant 
Level

0-5 Fine Roots 
Biomass 
(g.m-2)

11.61±1.35ab 6.15±1.22b 28.88±3.12aA 31.91±3.90aB 0.000**

5-15 8.08±1.50c 6.19±1.64c 15.00±2.05bB 56.34±4.95aA 0.000**

Mean values within rows followed by different lower-case letters indicate significant differences among forest stands. Mean values within 
columns followed by different upper-case letters indicate significant differences among the depths of soil. **P ≤ 0.01, *P ≤ 0.05, nsP ≥ 0.05
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Figure 4) Sequestered soil carbon dioxide of soil 
(t.ha-1) across natural and plantation forest stands at 
different depths.
Mean values by different lower-case letters indicate significant 
differences among forest stands.

Figure 5) Sequestered carbon dioxide of fine roots 
(t.ha-1) in fine roots across natural and plantation 
forest stands at different depths.
Mean values by different lower-case letters indicate significant 
differences among forest stands.

Figure 6) Economic value of sequestered carbon dioxide 
storage (USD) across natural and plantation forest stands 
at different depths.
Mean values by different lower-case letters indicate significant 
differences among forest stands.

Discussion
Overall, the natural forest demonstrated 
superior soil physicochemical properties 
compared to planted stands. However, Acer 
velutinum plantations exhibited comparable 
soil carbon storage to natural forests, a 
finding that aligns with studies highlighting 
the species' specific potential for carbon 
sequestration. Notably, Quercus castaneifolia 
showed the lowest soil moisture and organic 
matter content, consistent with its drought-
tolerant traits. The role of organic matter in 
moisture retention is well-documented, as 
it reduces evaporation and enhances water 
infiltration —a mechanism corroborated 
by similar studies [35, 36]. Correspondingly, 
[37] demonstrated that soil organic matter 
significantly influences soil moisture content 
in 20-year-old plantations of Quercus 
castaneifolia, Fraxinus excelsior L., Pinus 
brutia Ten., and natural oak-beech stands in 
Darabkola of Sari. 
Soil texture remained stable across stands, 
supporting the paradigm that short-
term changes in physical properties are 
minimal [4,38]. Similarly, Moshki et al. [38] 

found no changes in soil texture in 40-year-
old plantations of Pinus eldarica Medw. 
Moreover, Robinia pseudoacacia L., compared 
to the bare areas in the Sokan Forest Park 
of Semnan. However, [39] demonstrated 
variations in soil texture in a 35-year-old 
afforestation of Fraxinus excelsior, Picea abies 
L., Pinus nigra Arn., and Quercus castaneifolia 
in the northern forests of Iran, likely due to 
site-specific factors such as parent material 
or management history.
Alnus subcordata drove lower soil pH and 
higher nitrogen levels at 0–5 cm depth, 
which aligns with global observations 
that nitrogen-fixing species accelerate 
nitrification, acidifying soils while enriching 
nitrogen pools [40]. Consistently, Yamashita 
et al. [41] observed that areas afforested 
with Acacia mangium Wild. had lower pH 
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values compared to areas dominated by 
species without nitrogen-fixing capabilities. 
Furthermore, the nitrogen levels at the 
first soil depth were highest in both the 
natural forests and Alnus subcordata stands. 
[42] The reported correspondingly higher 
nitrogen content in Alnus subcordata stands 
compared to those of Acer velutinum, Quercus 
castaneifolia, Cupressus sempervirens L., and 
natural forests in the Sari Darabkola forests 
is attributed to its nitrogen-fixing ability.
Our results identified bulk density and 
moisture as primary determinants of soil 
carbon storage, contrasting with studies that 
emphasize the roles of nitrogen, soil texture, 
pH, and C/N ratio in carbon storage in soil 
[13-16, 43]. Moreover, the positive correlation 
between carbon storage in fine root biomass 
and soil pH in our study may be attributed 
to the fact that an alkaline environment is 
more conducive to root growth, promoting 
enhanced microbial activity and root 
development [44, 45]. Different findings, such 
as null correlations in Pinus eldarica and 
Quercus brantii stands, highlight context-
dependent interactions between soil 
properties and carbon dynamics [12]. 
Generally, the type of vegetation and soil 
properties play a significant role in carbon 
storage within the soil, as the amount of 
carbon sequestered is influenced by the 
input from plant residues and associated 
decomposition processes [46,49]. While natural 
forests typically outperform plantations 
in carbon storage [50], our findings reveal 
that Acer velutinum stands store carbon 
at levels comparable to natural forests - 
contrary to our initial hypothesis. This 
contrasts with studies by [50], who reported 
higher carbon stocks in natural forests than 
in afforested stands of Acer cappadocicum 
Gled., Cryptomeria japonica (Thunb. ex.l.f.), 
and Cupressus sempervirens in Lavij, 
Mazandaran. Also, [51] observed reduced 
soil organic carbon in afforested Quercus 

macranthera F. et Mey. stands relative to 
natural forests in Khalkhal, Iran.
In our study, 30-year-old Acer velutinum 
and Alnus subcordata stands stored 
approximately 95 and 82 t.ha-1 in the soil, 
respectively. However, Haghdoust et al. 
[9] reported higher values (105 and 102 
t.ha⁻¹ for the same species in Chamestan, 
Mazandaran), likely due to their greater tree 
density (2,500 vs. 600 tree.ha⁻¹) compared 
to our study site). Furthermore, the lower 
carbon stock in Quercus castaneifolia 
compared to other investigated stands 
might be due to slower leaf decomposition, 
resulting from its lower nitrogen content 
and, consequently, higher C/N ratio [52, 53]. Our 
results align with [54, 55], who found elevated 
levels of soil organic carbon and nitrogen in 
Alnus subcordata plantations compared to 
Quercus castaneifolia.
Most studies on oak forests have focused 
on Quercus brantii Lindl. For instance, 
Soleimanipour et al. [56] estimated carbon 
storage at 14 t per 121 trees.ha⁻¹ in 
Chaharmahal and Bakhtiari Province, while 
Yousefi et al. [57] reported 8 t per 145 trees.
ha⁻¹ in Kermanshah—both substantially 
lower than our Quercus castaneifolia value 
(70 t.ha⁻¹). These disparities likely arise 
from differences in tree density, species 
traits, soil properties, and regional climate.
The economic evaluation of various ecosystem 
services provided by reforestation serves as 
a valuable foundation for understanding the 
multiple benefits of natural ecosystems [58]. 
The mean economic value of carbon dioxide 
storage for the investigated stands in our 
study was 24,000 USD.ha-1. Sheykholeslami 
et al. [59] estimated carbon storage values of 
11,437 USD.ha-1 (conifers) and 60,445 USD.
ha-1 (broadleaf species) in Marzanabad, 
while Bordbar [60] reported 6,193 USD.ha-1 
for Quercus brantii in Fars Province. Fathi 
et al. [61] further document devaluations 
of 3,792 USD.ha-1, 2,972 USD.ha-1, and 



Soil Physico-chemical Properties and Below-ground ...

ECOPERSIA                                                    	                                                          Summer 2025, Volume 13, Issue 3

262

1,938 USD.ha-1 for Robinia pseudoacacia, 
Fraxinus excelsior, and Cupressus arizonica 
Greene. stands in Tehran, respectively. Such 
variability underscores the impact of local 
environmental conditions, management 
practices, and methodological approaches 
on carbon valuation. 

Conclusion
Contrary to our initial hypothesis, Acer 
velutinum demonstrated below-ground 
carbon storage levels comparable to those 
of natural forests, suggesting that this 
species can serve as an effective tool for 
restoring soil carbon stocks in degraded 
forest ecosystems. This finding challenges 
the conventional assumption that natural 
forests inherently possess superior soil 
carbon storage capacity relative to reforested 
stands. Given its performance, Acer velutinum 
should be prioritized in future reforestation 
initiatives aimed at maximizing carbon 
sequestration. Key drivers of carbon storage, 
including soil bulk density and moisture 
content, played a critical role in these 
dynamics. Based on soil and root biomass 
measurements, the estimated carbon 
storage value of these plantations reached 
approximately USD24,000 per hectare per 
stand. Extrapolated across the 15−hectare 
study area to USD360,000, underscoring 
the significant role of such reforestation 
efforts in mitigating atmospheric CO₂. These 
results provide a robust economic rationale 
for integrating carbon valuation into forest 
management strategies. By quantifying the 
ecosystem services offered by reforestation, 
policymakers and land-use planners can 
make data-driven decisions to optimize 
conservation and restoration efforts. 
However, further research is necessary 
to fully assess carbon stocks, including 
aboveground biomass (e.g., tree trunks 
and litter), to obtain a comprehensive 
understanding of the sequestration potential 

of these ecosystems. The focus of this study 
was on measuring carbon storage in soil 
and fine roots. However, measuring carbon 
in the aboveground biomass could also 
provide helpful information. This required 
the accurate sampling of available litter 
on the soil, as well as on trunks, branches, 
and leaves of trees, which necessitated a 
dedicated method that was beyond the 
scope of this study.
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