Ecotoxicological Assessment of Potentially Toxic Elements in Sediments from Some Southern Rivers of the Caspian Sea using Single and Integrated Pollution Indices

Document Type : Original Research

Authors
1 MS.c Graduated from Fisheries, Faculty of Natural Resources, Gonbad Kavoos University
2 Assistant Professor of Fisheries, Faculty of Natural Resources, Gonbad Kavoos University
3 Assistant Professor in Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University
4 Professor of Fisheries, Faculty of Natural Resources, Gonbad Kavoos University
5 Assistant Professor of Fisheries, Faculty of Animal Sciences and Natural Resources, Sari Agricultural Sciences and Natural Resources University
Abstract
Background: Due to high toxicity, durability in natural conditions, and bioaccumulation in the food chain, potentially toxic elements are considered serious pollutants.

Material and Method: toxic elements (Al, As, Cr, Cd, Co, Cu, Ni, Pb, Zn, V, and Mn) in sediment samples from some coastal rivers flowing into the southern Caspian Sea (Tajan, Babolroud, and Shirood) were assessed. Single (Cf , EF, Igeo, Hq, PLI, and QoC) and integrated contamination indices (m-PEC-q, m-PEL-q, MERMQ, NPI, and CSI) were used to assess the ecotoxicological risk of the metals.

Results: At all sites, the level of Cd was less than the detection limit (<5 mg.kg-1), indicating no significant source of pollution containing Cd. The mean concentration order of the metals in the rivers varied, suggesting that their contaminant sources significantly differed. The metal content of the Tajan River was substantially lower than that of the other rivers. EF values of Cu, Ni, and As showed partial enrichment, probably indicating their anthropogenic origin. According to the single indices of CF, Igeo, PLI, and Hq, the Babolrood and Shirood Rivers, sediment was significantly contaminated by As, Ni, and Zn. Based on NPI values, the Shirood River was extremely polluted by As. Integrated ecotoxicological risk indices of CSI, m-ERM-Q, and m-PEL-q suggest that metals pose medium to low levels of environmental toxicity in the Babolrood and Shirood Rivers.

Discussion and Conclusion: This research demonstrated the necessity of using management and pollution control strategies such as improving wastewater treatment, promoting sustainable agriculture, and regulating industrial discharges.
Keywords

Subjects


1. Abadi M., Zamani A A., Parizanganeh A., Khosravi Y., Badiee H. Heavy metal contamination in surface sediments of four important rivers leading to the Caspian Sea. Wetl. Ecobio. 2019; 11 (2):67-82. http://jweb.ahvaz.iau.ir/article-1-782-fa.html.
2. Abrantes A., Pinto F., Moreira M. Ecology of polychaete Nereis diversicolor, in the Cannal de Mira (Ria de averio, Portugal). Population dynamics, production, and oogenic cycle. Acta. Oceanol. Sin. 1999; 20 (4): 267–283. https://doi.org/10.1016/S1146-609X(99)00139-3.
3. Adamiec E., Jarosz-Krzemińska E., Wieszała R. Heavy metals from nonexhaust vehicle emissions in urban and motorway road dust. Environ. Monit. Assess. 2016; 188, 369. https://doi:10.1007/s10661-016-5377-1.
4. Adomako D., Nyarko B. J. B., Dampare S. B., Serfor Armah Y., Osae S., Fianko J. R., Akaho E. H. K. Determination of toxic elements in waters and sediments from river Subin in the Ashanti Region of Ghana. Environ. Monit. Assess. 2008; 141: 165-175. https://doi: 10.1007/s10661-007-9885-x.
5. Alahabadia A., Malvandi H. Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran. Mar. Pollut. Bull. 2018; 133: 741–749. https://doi.org/10.1016/j.marpolbul.2018.06.030.
6. Amin B., Ismail A., Arshad A., Yap C. K., Kamarudin M. S. Anthropogenic impact on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ. Monit. Assess. 2009; 148: 91–305. https://doi: 10.1007/s10661-008-0159-z.
7. Ameh T., Sayes Ch. M. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Phar. 2019; (17): 103220. https://doi.org/10.1016/j.etap.2019.103220.
8. Bagheri H., Mahmudy Gharaie M. H., Moussavi Harami R., KHanehbad M. Trace metal environmental contamination records in core sediments of Gorgan Bay in the southeast of the Caspian Sea. Appl. Ecol. Env. Res. 2019; 17(4): 9547-9559. http://dx.doi.org/10.15666/aeer/1704_95479559.
9. Bastami K. D., Bagheri H., Haghparast S., Soltani F., Hamzehpoor A., Bastami M. D. Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar. Pollut. Bull. 2012; 64: 2877–2884. https://doi.org/10.1016/j.marpolbul.2012.08.015.
10. Bastami K. D., Neyestani M.R., Shemirani F., Soltani F., Haghparast S., Akbari A. Heavy metal pollution assessment about sediment properties in the coastal sediments of the southern Caspian Sea. Mar. Pollut. Bull. 2015; 92: 237–243. https:// doi:10.1016/j.marpolbul.2014.12.035.
11. Bastami K. D., Neyestani M. R., Esmaeilzadeh M., Haghparast S., Alavi C., Fathi S., Nourbakhsh Sh., Shirzadi E. A., Parhizgar R. Geochemical speciation, bioavailability and source identification of selected metals in surface sediments of the Southern Caspian Sea, Mar. Pollut. Bull. 2017; 114: 1014–1023. https://doi.org/10.1016/j.marpolbul.2016.11.025.
12. Bastami K.D., Neyestani M.R., Molamohyedin N., Shafeian E., Haghparast S., Shirzadi I.A., Baniamam M. Bioavailability, mobility, and origination of metals in sediments from Anzali Wetland, Caspian Sea. Mar. Pollut. Bull. 2018; 136, 22–32. https://doi.org/10.1016/j.marpolbul.2018.08.059.
13. Benson N.U., Adedapo A.E., Fred-Ahmadu O.H., Williams A.B., Udosen E.D., Ayejuyo O.O., Olajire A.A. New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea. Reg. Stud. Mar. Sci. 2018; 18: 44–56. https://doi.org/10.1016/j.rsma.2018.01.004.
14. Bricker S. B., Longstaff B., Dennison W., Jones A., Boicourt K., Wicks C., Woerner J. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae. 2008; 8(1):21–32. https://doi.org/10.1016/j.hal.2008.08.028.
15. Cheng J. L., Shi Z., Zhu Y. W. Assessment and Mapping of Environmental Quality in Agricultural Soils of Zhejiang Province, China. J. Environ. Sci. 2007; 19: 50–54. https://doi.org/10.1016/S1001-0742(07)60008-4.
16. Cheraghi M., Almasieh, K. Mercury contamination in tigertooth croaker, Otolithes ruber (Teleostei, Sciaenidae), fish of the Northwestern Persian Gulf with an emphasis on human health risk, ISSN: 2538-2152; Ecopersia 2024;12(1):81-92. https:// doi: 10.22034/ecopersia.12.1.81.
17. Daesslé L. W., Rendón–Márquez G., Camacho–Ibar V. F., Gutiérrez–Galindo E. A., Shumilin E., Ortiz–Campos, E. Geochemistry of modern sediments from San Quintín coastal lagoon, Baja California: Implication for provenance. Rev. Mex. Cienc. Geol. 2009; 26 (1): 117-132. https://www.scielo.org.mx/pdf/rmcg/v26n1/v26n1a10.pdf.
18. Das B. K., Kumar V., Chakraborty L., Swain H. S., Ramteke M. H., Saha A., Das A., Bhor M., Upadhyay A., Jana Ch., Manna R. K., Samanta S., Tiwari N. K., Ray A., Roy Sh., Bayen S., Das Gupta S. Receptor model-based source apportionment and ecological risk assessment of metals in sediment of river Ganga, India. Mar. Pollut. Bull. 2023; 195: 115477. https://doi.org/10.1016/j.marpolbul.2023.115477.
19. Gabi A. U., Salihu I. M., Hamza U. I., Yahaya I., Muhammad H. M., Aliyu A. D. Assessment of some heavy metal concentration in fish, water, and sediment of river Ndakotsu, Lapai, Niger State. Glob. Sus. Res. 2022; 1(1): 24-31. https://doi.org/10.56556/gssr.v1i1.304.
20. Gayathri S., Krishnan K.A., Krishnakumar A., Vishnu M.T. M., Dev V. V., Antony S., Arun V. Monitoring of heavy metal contamination in Netravati river basin: overview of pollution indices and risk assessment. Sustain. Water Resour. Manag. 2021; 7(20). https://doi.org/10.1007/s40899-021-00502-2
21. Gordeev V. V., Martin J. M., Sidorov I. S., & Sidorova M. V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am. J. Sci. 1996; 296(6): 664–691. https://doi.org/10.2475/ajs.296.6.664.
22. Haghnazar H., Hudson-Edwards K.A., Kumar V., Pourakbar M., Mahdavianpour M., Aghayani E. Heavy metals contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere. 2021; 285: 131446. https://doi.org/10.1016/j.chemosphere.2021.131446.
23. Holcik J. The freshwater fishes of Europa, AULA. Verlag Gmbh, Wiesbaden, part2. 1989; 469P. https://www.academia.edu/35106152/Holcik_1989_The_Freshwater_Fishes_of_Europe_pdf.
24. Huang K. M., Lin S. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere. 2003; 53: 1113–1121. https://doi.org/10.1016/S0045-6535(03)00592-7.
25. Iranian Fisheries Science Research Institute. Identification and survey of habitats and centers of genetic reserves in the northern provinces of the country and their standard classification (freshwater, coastal, and marine ecosystems of Iran), Ministry of Agricultural Jihad. Final report by Agricultural Research, Education and Extension Organization. 2018; 51 p. https://civilica.com/doc/1090129.
26. Iran Fisheries Org. Statistical Yearbook of Iranian Fisheries Organization, edited by Ghorbanzadeh, R. and Nazari, S. 1st edition, Iran Fisheries Organization, Deputy of Planning and Resource Management, Planning and Statistics Department. 2021, 64p. https://www.fisheries.ir.
27. Jamshidi S., Bastami K. D. Preliminary assessment of metal distribution in the surface sediments along the coastline of the southern Caspian Sea, Mar. Pollut. Bull. 2017; 116 (1-2):462-468. https://doi.org/10.1016/j.marpolbul.2016.12.033.
28. Javanbakht M., Beheshtipur M. R., Raftari Farimani Sh. Factors affecting average grain size changes in rivers of a catchment area (Ardak catchment area, northeast Iran). Arab. J. Geosci. 2022; 15: 448. https://doi.org/10.1007/s12517-021-08512-2.
29. Karbassi A. R. Geochemistry of Ni, Zn, Cu, Pb, Co, Cd, V, Mn, Fe, Al, and Ca in sediments of the northwestern part of the Persian Gulf. Int. J. Environ. Stu. 1998; 54(3-4): 205-212. https://doi.org/10.1080/00207239808711153.
30. Kazemi A, Riyahi Bakhtiari A, Kheirabadi N, Mohammad Karimi A. Distribution of Pb in sediment and shell of rocky oysters (Saccostrea cucullata) of Lengeh Port, Qeshm and Hormoz Islands in Persian Gulf, Iran. Ecopersia 2013; 1 (2) :191-198. https:// doi: 20.1001.1.23222700.2013.1.2.8.0.
31. Kelepertzis E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma. 2014; 221–222, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007.
32. Khalili R., Zali S. A., Motaqhi H. Evaluation of heavy metals in water and sediments of Haraz River, using pollution load index (PLI) and geoaccumulation index (Igeo), Iran. J. Soil. Wat. Res. 2021; 52(4): 933-942. 10.22059/IJSWR.2021.316080.668850.
33. Khalijian A., Lorestani B., Sobhanardakani S. Cheraghi M., Tayebi L. Ecotoxicological Assessment of Potentially Toxic Elements (as, Cd, Ni and V) Contamination in the Sediments of Southern Part of Caspian Sea, the Case of Khazar Abad, Mazandaran Province, Iran. Bull. Environ. Contam. Toxicol. 2022; 109: 1142–1149. https://doi.org/10.1007/s00128-022-03621-4
34. Kharat Sadeghi M., Karbasi A. R. Investigating the concentration and origin of heavy elements in the sediments of Shiroud River. Sci. Environ. Tech. 2006; 8(3): 43-51. https://sanad.iau.ir/Journal/jest/Article/839086.
35. Kim I. G., Kim Y. B., Kim R. H., Hyon T. S. Spatial distribution, origin, and contamination assessment of heavy metals in surface sediments from Jangsong tidal flat, Kangryong river estuary, DPR Korea. Mar. Pollut. Bull. 2021; 168: 112414. https:// doi: 10.1016/j.marpolbul.2021.112414.
36. Kowalska J.B, Mazurek, R., Ga˛siorek, M., Setlak, M., Zaleski, T., Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity -a case study from Krakow (Poland), Environ. Pollut. 2016; 218: 1023 –1036. https://doi.org/10.1016/j.envpol.2016.08.053
37. Kowalska J.B., Mazurek R., Gąsiorek M., Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Hlth. 2018; 40: 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.
38. Kumar N., Chandan N. K., Bhushan S., Singh D. K., Kumar S. Health risk assessment and metal contamination in fish, water, and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Sci. Rep-UK. 2023; 13(1): 1546. https://doi.org/10.1038/s41598-023-28801-y
39. La Colla N., Botté S. E., Simonetti P., Negrin V. L., Serra A. V., Marcovecchio J. E. Water, sediments and fishes: First multi compartment assessment of metal pollution in a coastal environment from the SW Atlantic. Chemosphere 2021; 282: 131131. https://doi.org/10.1016/j.chemosphere.2021.131131
40. Leist M., Casey R. J., Caridi D. The management of arsenic wastes: problems and prospects. J. Hazard. Mater. 2000; 76: 125–138. PMID: 10863019. https://doi.org/10.1016/S0304-3894(00)00188-6.
41. Leygraf C., Chang T., Herting G., Odnevall Wallinder I. The origin and evolution of copper patina color. Corros. Sci. 2019; 157: 337-346.
10.1016/j.corsci.2019.05.025.
42. Liaghati T., Preda M., Cox M. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ. Int. 2004; 29: 935–948. https://doi.org/10.1016/S0160-4120(03)00060-6.
43. Long E. R., MacDonald D. D., Smith S. L., Calder F. D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 1995; 19: 18–97. https://doi.org/10.1007/BF02472006.
44. MacDonald DD, Ingersoll CG, Berger T. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Con. Tox. 2000; 39:20-31. https://doi.org/10.1007/s002440010075.
45. Malvandi H. An Assessment of Metal Contamination Risk in Sediments of the Mohammad Abad River, Northern Iran. J Biomed Res Environ Sci. 2021; 2(8): 696-704. doi: 10.37871/jbres1299, Article ID: JBRES1299, Available at: https://www.jelsciences.com/articles/jbres1299.pdf
46. Mazurek R., Kowalska J., Gasiorek M., Zadrozny P., Jozefowska A., Zaleski T., Kepka W., Tymczuk M., Orłowska K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution, Chemosphere 2017; 168: 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126
47. Mortazavi S., Saberinasab F. Heavy metals assessment of surface sediments in Mighan Wetland using the sediment quality index, Ecopersia. 2017; 5 (2): 1761 -1770. https:// doi: 10.18869/modares.Ecopersia.5.2.1761.
48. Muller G. Index of geoaccumulation in soils of the Rhine River. Geoj. Lib. 1969; 2:108–118. https://www.scirp.org/reference/referencespapers?referenceid=1803049
49. Pejman A., Bidhendi G.N., Ardestani M., Saeedi M., Baghvand A. A new index for assessing heavy metals contamination in sediments: A case study. Ecol. Indic. 2015; 58: 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012.
50. Proshad R., Kormoker T., Al M.A., Islam M.S., Khadka S., Idris A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022; 423: 127030. https://doi.org/10.1016/j.jhazmat.2021.127030.
51. Sabet Aghlidi P., Cheraghi M., Lorestani B., Sobhandarakani S., Merrikhpour H. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. J Environ Health Sci Engineer. 2020; 18: 665–676. https://doi.org/10.1007/s40201-020-00492-x.
52. Sadeghifar T., Azarmsa S. A. Analysis of Sediment Grain Size Distribution and Texture in the South Part of the Caspian Sea (A Case Study; Noor Coastal Zone), Iran. J. Mar. Sci. Tech. 2015; 19(73):23-36. 20.1001.1.17355346.1394.19.73.3.5.
53. Sartipi Yarahmadi, S., Ansari, M. R. Ecological risk assessment of heavy metals (Zn, Cr, Pb, As, and Cu) in sediments of Dohezar River, North of Iran, Tonekabon city, Acta. Ecol. Sin. 2018; 38: 126–134. https://doi.org/10.1016/j.chnaes.2017.06.018.
54. Senthil L. S., Kumar A. T. T., Pandi M. T., Dhaneesh K. V., Murugan B. J., Subramanian B. T. Metals contagion in ecologically important estuary located in the Bay of Bengal. Water Qual. Expo. Hea. 2012; 4: 137-142. https:// doi: 10.1007/s12403-012-0072-0.
55. Shakya P. R. Nickle adsorption by wild type and nickel-resistant isolate of Chlorella Sp. Pak. J. Anal. Environ. Chem. 2007; 8(1-2): 86-90. https://inis.iaea.org/records/927am-nkw97
56. Smith S.L., MacDonald D.D., Keenleyside K.A., Ingersoll C.G., Field J. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 1996; 22:624-638. https://doi.org/10.1016/S0380-1330(96)70985-1.
57. Sobhanardakani S. Ecological and Human Health Risk Assessment of Heavy Metal Content of Atmospheric Dry Deposition, a Case Study: Kermanshah, Iran. Biol Trace Elem Res. 2019; 187:602–610. https://doi.org/10.1007/s12011-018-1383-1.
58. Sobhanardakani S., Ghoochian M., Taghavi L. Assessment of Heavy Metal Contamination in Surface Sediment of the Darreh-Morad Beyg River. Iran J Health Sci. 2016; 4 (3):22-34
http://jhs.mazums.ac.ir/article-1-438-en.html.
59. Sutherland R. A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geo. 2000; 39: 611–627. https://doi.org/10.1007/s002540050473.
60. Usman Q.A., Muhammad S., Ali W., Yousaf S., Jadoon I. A. K. Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan: Evaluation of pollution and potential risks. Environ. Tech. Inno. 2021; 21: 101184. https:// doi:10.1016/J.ETI.2020.101184.
61. USGS 2019. United States Geological Survey. https://www.usgs.gov/centers/nmic/copper statistics-and-information.
62. Vosoogh A., Saeedi M., Lak R. River surface size fractioned sediments pollution with heavy metals Case study: Sefidroud River, J. Environ. Stu. 2016; 41(4): 887-908. https:// doi:10.22059/JES.2016.57142.
63. Walker C. H., Hopkin S. P., Sibly R. M., Peakall D. B. Principles of ecotoxicology, 4th edition, Talor & Francis. 2012; 386p. https://doi.org/10.1201/b11767.
64. Yu G. Y., Liu. S., Yu S., Wu A., Leung X., Luo B., Xu H. Li., Wong M. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere 2011; 85(6): 1080-1087. https://doi.org/10.1016/j.chemosphere.2011.07.039.