Effect of Geology on the Chemistry of Water in Meymeh River, West of Iran

Document Type : Original Research

Authors
1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran
2 Assistant professor, Soil Conservation and Watershed Management Research Department, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran
3 Watershed and Range Management Department, Agriculture faculty, Ilam University, Ilam, Iran
4 Ph.D. Kharazmi University, Tehran, Iran
Abstract
Abstract:

Aims: The Meymeh River is fed by several tributaries, leading to a gradual decrease in its quality. Considering the construction of the Meymeh reservoir for agricultural use, it is necessary to monitor the spatial and temporal changes in water quality and to identify areas where river quality changes.

Methods: Our method was based on the analysis of 420 samples over 12 months (2016–2017) in three seasons (low, moderate, and high flow periods) from 35 measuring stations using Spearman's correlation, multivariate statistical analysis, agglomerative hierarchical clustering, and GIS.

Findings: The results showed that crossing the saline evaporite layers (especially the Gachsaran Formation) causes a gradual decrease in water quality from upstream to downstream. So, EC reaches from 400 to more than 3500 µm. cm-1 at the confluence of Varazan and Kharvazan tributaries. Besides, the sulfur spring with an average EC of 21590 µm. cm-1 increases EC 3.5 times. Siyoul tributary penetrates under the ground after passing through two saline zones and reappears at a distance of 150 to 200 m with an EC of 187800 µm. cm-1. It was also found that about 50% of the salinity of the Meymeh River is caused by the influence of the Ghadah Sulfur Spring and the Siyoul tributary.

Conclusion: This study has highlighted some options for managing the level of salinity in the dam. In most cases, one option on its own may not have the desired effect, and a combination of techniques is likely to bring the best results.
Keywords

Subjects


References
1. Abdollahi Z., Kavian A., Sadeghi S.H.R., Khosrovyan A., DelValls A. Identifying environmental risk associated with anthropogenic activities in Zanjanrud River, Iran, using an integrated approach. Catena 2019; 183:104156. https://www.sciencedirect.com/science/article/abs/pii/S034181621930298X
2. Faye C. Water Resources and Their Management in an Increasing Urban Demography: The Case of Dakar City in Senegal. Resour. of Water 2021:101. https://www.intechopen.com/chapters/70182
3. Mainali J., Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. J. Hydrol. 2018; 564:26-40. https://www.sciencedirect.com/science/article/abs/pii/S0022169418304967
4. Wijesiri B., Deilami K., Goonetilleke A. Evaluating the relationship between temporal changes in land use and resulting water quality. Environ. Pollut. 2018; 234:480-6. https://www.sciencedirect.com/science/article/abs/pii/S026974911734366X
5. Leonardo Mena-Rivera V.S.-S., Cristina Benavides-Benavides, Juana Coto-Campos, Thomas Swinscoe. Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica. Water 2017; 9(8):558. https://www.mdpi.com/2073-4441/9/8/558
6. Sahraei Parizi H., Samani N. Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area (Iran) using multivariate statistical techniques. Environ. Earth. Sci. 2012; 69(5):1699-718. https://link.springer.com/article/10.1007/s12665-012-2005-4
7. Barzegar R., Asghari Moghaddam A., Soltani S., Baomid N., Tziritis E., Adamowski J., Inam A. Natural and anthropogenic origins of selected trace elements in the surface waters of Tabriz area, Iran. Environ. Earth. Sci. 2019; 78(8). https://link.springer.com/article/10.1007/s12665-019-8250-z
8. Varol M., Gökot B., Bekleyen A., Şen B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012; 92:11-21.
9. Baba A., Gündüz O. Effect of geogenic factors on water quality and its relation to human health around Mount Ida, Turkey. Water 2017; 9(1):66. https://www.sciencedirect.com/science/article/abs/pii/S034181621100213X
10. Kavian A., Dodangeh S., Abdollahi Z. Annual suspended sediment concentration frequency analysis in Sefidroud basin, Iran. MESE 2016; 2(1):48. https://link.springer.com/article/10.1007/s40808-016-0101-2
11. Nouri J., Mahvi A., Jahed G., Babaei A.J.E.G. Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geol. 2008; 55(6):1337-43. https://link.springer.com/article/10.1007/s00254-007-1081-3
12. Khadivi S. Tectonic evolution and growth of the Zagros Mountain Belt (Fars, Iran): constraints from magnetostratigraphy, sedimentology and low-temperature thermochronometry: Université Pierre et Marie Curie-Paris VI; 2010. https://theses.hal.science/tel-00642547/
13. Rezaee P., Salari S. Petrography and mineralgy of Gachsaran formation in west of Bandar-e-Abbas, Kuh-e-Namaki Khamir section, south of Iran. J. Fundam. Appl. Sci. 2016; 8(2):956-69. https://www.ajol.info/index.php/jfas/article/view/142591
14. Klimchouk A. The dissolution and conversion of gypsum and anhydrite. INT. J. SPELEOL. 1996; 25(3):2. https://digitalcommons.usf.edu/ijs/vol25/iss3/2/
15. Reiss A.G., Gavrieli I., Rosenberg Y.O., Reznik I.J., Luttge A., Emmanuel S., Ganor J. Gypsum precipitation under saline conditions: thermodynamics, kinetics, morphology, and size distribution. Minerals 2021; 11(2):141. https://www.mdpi.com/2075-163X/11/2/141
16. Ghadiri A., Hashemi S.H., Nasrabadi T. The efficiency of Iran's water resources quality index in comparison with three indices for assessment of Heavy Metal pollution in surface water (Case study: north and east of Tehran’s runoff). MCEJ. 2021; 21(2):177-88. https://mcej.modares.ac.ir/article-16-45832-en.html
17. Shafiee M., Azizipour M., Sasani H., Takdastan A. Assessment of Water Quality in the Karun River of Ahvaz City According to Existing Standards. MCEJ. 2024; 24(1):113-25. https://mcej.modares.ac.ir/article-16-67886-en.html
18. López-López J.A., Mendiguchía C., García-Vargas M., Moreno C. Multi-way analysis for decadal pollution trends assessment: The Guadalquivir River estuary as a case study. Chemosphere 2014; 111:47-54. https://www.sciencedirect.com/science/article/abs/pii/S0045653514004044
19. Ma X., Wang L., Yang H., Li N., Gong C. Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin, East China. Water 2020; 12(10):2764. https://www.mdpi.com/2073-4441/12/10/2764
20. Melland A.R., Fenton O., Jordan P. Effects of agricultural land management changes on surface water quality: A review of meso-scale catchment research. Environ. Sci. Policy. 2018; 84:19-25. https://www.sciencedirect.com/science/article/abs/pii/S1462901117309784
21. Mostafaei A. Application of Multivariate Statistical Methods and Water-Quality Index to Evaluation of Water Quality in the Kashkan River. Environ. Manage. 2014; 53(4):865-81. https://link.springer.com/article/10.1007/s00267-014-0238-6
22. Qian Y., Migliaccio K.W., Wan Y., Li Y. Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. Water. Resour. Res. 2007; 43(8). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006WR005716
23. Barakat A., El Baghdadi M., Rais J., Aghezzaf B., Slassi M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. ISWCR. 2016; 4(4):284-92. https://www.sciencedirect.com/science/article/pii/S2095633916300545
24. Khan M.Y.A., Gani K.M., Chakrapani G.J. Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arab. J. Geosci. 2016; 9(1):1-9. https://link.springer.com/article/10.1007/s12517-015-2134-7
25. Grzywna A., Bronowicka-Mielniczuk U. Spatial and Temporal Variability of Water Quality in the Bystrzyca River Basin, Poland. Water 2020; 12(1):190. https://www.mdpi.com/2073-4441/12/1/190
26. Tokatli C. Water Quality Assessment of Ergene River Basin Using Multivariate Statistical Analysis. LimnoFish. 2020:38-46. https://www.cabidigitallibrary.org/doi/full/10.5555/20203198841
27. Custodio M., Peñaloza R. Data on the spatial and temporal variability of physical-chemical water quality indicators of the Cunas River, Peru. CDC 2021; 33:100672. https://www.sciencedirect.com/science/article/abs/pii/S2405830021000264
28. Walls S., Binns A.D., Levison J., MacRitchie S. Prediction of actual evapotranspiration by artificial neural network models using data from a Bowen ratio energy balance station. Neural Comput. Appl. 2020; 32:14001-18. https://link.springer.com/article/10.1007/s00521-020-04800-2
29. Ahmed N., Howlader N., Hoque M.A.-A., Pradhan B. Coastal erosion vulnerability assessment along the eastern coast of Bangladesh using geospatial techniques. Ocean Coast. Manage. 2021; 199:105408. https://www.sciencedirect.com/science/article/abs/pii/S096456912030315X
30. Mahdavi M. Applied Hydrology. Tehran University Press (In Persian) 2007; Vol.1:342.
31. Apha A. WEF (2005) Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation. Washington, DC. 2007. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-water-testing-standard-methods-introduction-white-paper.pdf
32. Feizizadeh B., Abdollahi Z., Shokati B. A GIS-based spatiotemporal impact assessment of droughts in the hyper-saline Urmia Lake Basin on the hydro-geochemical quality of nearby aquifers. Remote. Sens. 2022; 14(11):2516. https://www.mdpi.com/2072-4292/14/11/2516
33. Varol M.J.E.P. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environ. Pollut. 2020; 259:113860. https://www.sciencedirect.com/science/article/abs/pii/S0269749119344082
34. Wang X., Li J., Chen J., Cui L., Li W., Gao X., Liu Z. Water quality criteria of total ammonia nitrogen (TAN) and un-ionized ammonia (NH3-N) and their ecological risk in the Liao River, China. Chemosphere 2020; 243:125328. https://www.sciencedirect.com/science/article/abs/pii/S0045653519325688
35. Liu M., Wang H.-J., Wang H.-Z., Ma S.-N., Yu Q., Uddin K.B., Li Y., Hollander J., Jeppesen E. Decreasing toxicity of un-ionized ammonia on the gastropod Bellamya aeruginosa when moving from laboratory to field scale. Ecotox. Environ. Safe. 2021; 227:112933. https://www.sciencedirect.com/science/article/pii/S0147651321010459
36. Kim M., Jang G.-J., Kim J.-H., Lee M. Speaker Adaptation Using i-Vector Based Clustering. Systems. TIIS. 2020; 14(7):2785-99. https://itiis.org/digital-library/23714
37. Bhat S.A., Meraj G., Yaseen S., Pandit A.K. Statistical assessment of water quality parameters for pollution source identification in Sukhnag stream: an inflow stream of lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. 2014; 2014:1-18. https://onlinelibrary.wiley.com/doi/full/10.1155/2014/898054
38. Yang K., Yu Z., Luo Y., Yang Y., Zhao L., Zhou X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake. Sci. Total. Environ. 2018; 624:859-71. https://www.sciencedirect.com/science/article/abs/pii/S0048969717335453
39. Patil V.B.B., Pinto S.M., Govindaraju T., Hebbalu V.S., Bhat V., Kannanur L.N. Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality—a case study of Kanavi Halla Sub-Basin, Belagavi, India. Environ. Geochem. Hlth. 2020; 42(9):2667-84. https://link.springer.com/article/10.1007/s10653-019-00500-6
40. Bean T.A., Sumner P.D., Boojhawon R., Tatayah V., Khadun A.K., Hedding D.W., Rughooputh S.D.D.V., Nel W. Bedrock-incised gully erosion phenomena on Round Island, Mauritius. Catena 2017; 151:107-17. https://www.sciencedirect.com/science/article/abs/pii/S034181621630515X
41. Zeinalzadeh K., Rezaei E. Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies. J. Hydrol. Reg. Stud. 2017; 13:1-10. https://www.sciencedirect.com/science/article/pii/S2214581816300726
42. Simeonov V., Stratis J., Samara C., Zachariadis G., Voutsa D., Anthemidis A., Sofoniou M., Kouimtzis T.H. Assessment of the surface water quality in Northern Greece. Water. Res. 2003; 37(17):4119-24. https://www.sciencedirect.com/science/article/abs/pii/S0043135403003981
43. Zheng L.-y., Yu H.-b., Wang Q.-s. Assessment of temporal and spatial variations in surface water quality using multivariate statistical techniques: A case study of Nenjiang River basin, China. J. Cent. South. Univ. 2015; 22(10):3770-80. https://link.springer.com/article/10.1007/s11783-014-0736-z
44. Mukherjee I., Singh U.K.J.E.g., health. Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environ. Geochem. Health 2018; 40(6):2259-301. https://link.springer.com/article/10.1007/s10653-018-0096-x
45. Zhang Q., Li L., Sun R., Zhu D., Zhang C., Chen Q. Retrieval of the soil salinity from Sentinel-1 Dual-Polarized SAR data based on deep neural network regression. IEEE Geosci. Remote S. 2020; 19:1-5. https://ieeexplore.ieee.org/abstract/document/9288709
46. Kurunc A., YÜREKLİ K., ÖZTÜRK F. Effect of discharge fluctuation on water quality variables from the Yeşilırmak River. J. Agric. Sci. 2005; 11(02):189-95. https://dergipark.org.tr/en/pub/ankutbd/article/861357
47. Ejaz N. Investigation of the Soan River Water Quality Using Multivariate Statistical Approach. Int. J. Photoenergy 2020; 2020. https://onlinelibrary.wiley.com/doi/full/10.1155/2020/6644796
48. Ouyang Y., Nkedi-Kizza P., Wu Q., Shinde D., Huang C. Assessment of seasonal variations in surface water quality. Water Res. 2006; 40(20):3800-10. https://www.sciencedirect.com/science/article/abs/pii/S0043135406005094
49. Olsen R.L., Chappell R.W., Loftis J.C. Water quality sample collection, data treatment and results presentation for principal components analysis–literature review and Illinois River watershed case study. Water Res. 2012; 46(9):3110-22. https://www.sciencedirect.com/science/article/abs/pii/S0043135412001911
50. Piper A.M. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Trans. Am. Geophys. :union:. 1944; 25(6):914-28. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TR025i006p00914
51. Clow D.W., Striegl R.G., Dornblaser M. Spatiotemporal dynamics of CO2 gas exchange from headwater mountain streams. J. Geophys. Res.-Biogeo. 2021; 126(9):e2021JG006509. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JG006509
52. Razi M.H., Wilopo W., Putra D.P.E. Hydrogeochemical evolution and water–rock interaction processes in the multilayer volcanic aquifer of Yogyakarta-Sleman Groundwater Basin, Indonesia. Environ. Earth Sci. 2024; 83(6):164. https://link.springer.com/article/10.1007/s12665-024-11477-6
53. Boulom J., Putra D.P.E., Wilopo W. Chemical composition and hydraulic connectivity of springs in the Southern Slope of Merapi Volcano. J. Appl. Geol. 2015; 6(1). https://journal.ugm.ac.id/jag/article/view/7212
54. Cloutier V., Lefebvre R., Therrien R., Savard M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008; 353(3-4):294-313. https://www.sciencedirect.com/science/article/abs/pii/S0022169408001005
55. Rezaei Moghaddam M.H., Nikjoo M.R., Hejazi M.A., Khazri S., Kazemi A. The Effect of Hydrogeomorphological Factors on SiminehRood River Water Quality Changes at Different Study Stations during the Years 2003-2002. J. Hydrol. 2017; 4(2):395-405. https://link.springer.com/article/10.1007/s10661-021-09270-0
56. Kardan Moghaddam H., Javadi S., Roozbehani R., Mohammadi Ghale Ney M. Rivers riparian buffer zones determination by combining USDA and qualitative vulnerability (Case study: Ab-Shirin river). JSCR 2018; 25(4):113-32. https://jwsc.gau.ac.ir/article_4332_en.html?lang=en
57. Heshmati M., Gheitury M., Garibreza M. Quality of river water for irrigation and drinking uses and sources of contamination in upper catchment areas. ECOPERSIA 2021; 10;9(2):119-29. https://ecopersia.modares.ac.ir/browse.php?a_code=A-10-14545-&slc_lang=en&sid=24
58. Kaveh A.R., Habibnejad Roshan M., Shahedi K., Ghorbani J. Evaluation of temporal and spatial changes in water quality (Case Study: River Talar, Mazandaran Province). 2013; Sixth year: 49- 62. J. Water Resour. Eng. 2013; 6(18):49-62. (In Persian) https://ije.ut.ac.ir/article_61476_en.html
59. Davoudi Moghaddam D., Haghizadeh A., Tahmasebipour N., Zeinivand H. Spatial and temporal water quality analysis of a semi-arid river for drinking and irrigation purposes using water quality indices and GIS. ECOPERSIA 2021; 10;9(2):79-93. https://ecopersia.modares.ac.ir/browse.php?a_id=39920&sid=24&slc_lang=en&ftxt=0