1. Zhang, Z., Chang, J., Xu, C., Zhou, Y., Wu, Y., Chen, X., Jiang, S., Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years. Sci. Total Environ. 2018; 635: 443-451.
2. Ahmadi, S., Azarnivand, H., Khosravi, H., Dehghan, P., Behrang Manesh, M. Assessment the effect of drought and land use change on vegetation using Landsat data. Desert, 2019; 24 (1), 23-31.
3. Li, H., Xie, M., Wang, H., Li, S., Xu, M. Spatial heterogeneity of vegetation response to mining activities in resource regions of North western China. Remote Sens. 2020; 12: 3247.
4. Dehghan, P., Azarnivand, H., Khosravi, H., Zehtabian, G., Moghaddamnia, A. An ecological agricultural model using fuzzy AHP and PROMETHEE II approach. Desert, 2021; 26(1), 71-83.
5. Xu, M., Kang, S., Chen, X., Wu, H., Wang, X., Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018; 639: 1220-1232.
6. Huho, J. M., Kosonei, R. C. Understanding extreme climatic events for economic development in Kenya. IOSR J. Env. Sci. Toxicol. Food Technol. 2014; 8: 14-24.
7. Hossain, M. L., Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021; 30, e01768.
8. Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015; 21 (9): 3520-3531.
9. McKee, T. B., Doesken, N. J., Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, January. 1993;17-22: 179-184.
10. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 2010; 23 (7): 1696-1718.
11. Kogan, F. N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990; 11: 1405-1419.
12. Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., Verbist, K. Satellite remote sensing for water resources management: potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018; 54 (12): 9724-9758.
13. Holben, B. N., Tucker, C. J., Fan, C. J. Spectral assessment of soybean leaf area and lear biomass. Photogramm. Eng. Remote Sens. 1980; 46: 651-656.
14. Heydari Alamdarloo, E., Khosravi, H., Dehghan Rahimabadi, P., Ghodsi, M., The effect of climate fluctuations on vegetation dynamics in West and Northwest of Iran. Desert Ecosystem Engineering Journal. 2021; 3 (2): 19-28.
15. Safari Shad, M., Ildoromi, A. Akhzari, D. Drought monitoring using vegetation indices and MODIS data (case study: Isfahan province, Iran). Journal of Rangeland Science. 2017; 7 (2): 148-159.
16. Bagheri, S., Tamartash, R., Jafari, M., Tatian, M.R., Malekian, A., Peyrvand, V. Studying MODIS satellite data capability to prepare vegetation canopy in Qazvin plain rangelands. Journal of Rangeland. 2021; 15 (1): 24-36.
17. Dehghan Rahimabadi, P., Azarnivand, H. Assessment of the effect of climate fluctuations and human activities on vegetation dynamics and its vulnerability. Theor. Appl. Climatol. 2023; 1-16.
18. Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., Skalák, P. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol. 2014; 115: 563-581.
19. Tirivarombo, S., Osupile, D., Eliasson, P. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth. Parts A/B/C. 2018; 106: 1-10.
20. Bazrafshan, O., Mahmoudzadeh, F., Asgarinezhad, A., Bazrafshan, J. Adaptive evaluation of SPI, RDI, and SPEI indices in analyzing the trend of intensity, duration, and frequency of drought in arid and semi-arid regions of Iran. Irrigation Sciences and Engineering (JISE), 2019; 42 (3): 117-131.
21. Hosseini Pazhouh, N., Ahmadaali, K., Shokoohi, A. R. Assessment of standardized precipitation and standardized precipitation-evapotranspiration indices for wet period detection. J. Soil Water Conserv. 2019; 25 (6): 207-221.
22. Wang, F., Lai, H., Men, R., Sun, K., Li, Y., Feng, K., Tian, Q., Guo, W., Du, X., Qu, Y. Spatial and temporal evolutions of terrestrial vegetation drought and the influence of atmospheric circulation factors across the Mainland China. Ecol. Indic. 2024; 158: 111455.
23. Prasad, A. K., Chai, L., Singh, R. P., Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006; 8: 26-33.
24. Kogan, F., Salazar, L., Roytman, L. Forecasting crop production using satellite- based vegetation health indices in Kansas, USA. Int. J. Rem. Sens. 2012; 33: 2798-2814.
25. Hanafi, A. Study of climatic characteristics of the northwestern region of Iran based on multivariate statistical analysis. J. Clim. Change. 2022; 13 (50): 135-150.
26. Razmi, R., Sotoudeh. F., Salahi B. Spatio-temporal analysis and zoning of probable occurrence of wet and dry years in North West of iran. 2015; 15 (49): 74-57.
27. Mishra, A. K., Singh, V. P. Drought modeling-a review. J. Hydrol. 2011; 403 (1-2): 157-175,
28. Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Bashir, B., Elbeltagi, A., Széles, A., Alsalman, A, Harsanyi, E. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci. Rep. 2022; 12 (1): 8838.
29. Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N., Chau, K.W. Predicting standardized streamflow index for hydrological drought using machine learning models. Eng. Appl. Comput. Fluid Mech. 2020; 14 (1): 339-350.
30. Bhuiyan, C., Singh, R. P., Kogan, F. N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International J Appl. Earth Obs. Geoinf. 2006; 8 (4): 289-302.
31. Choi, M., Jacobs, J. M., Anderson, M. C., Bosch, D. D. Evaluation of drought indices via remotely sensed data with hydrological variables. J. Hydrol. 2014; 476: 265-273.
32. Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Begueria, S., Trigo, R., Lopez-Moreno, J. I., Azorin-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Moran-Tejeda, E., Sanchez-Lorenzo, A. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 2013; 110 (1): 52-57.
33. Xiujia, C., Guanghua, Y., Jian, G., Ningning, M., Zihao, W. Application of WNN-PSO model in drought prediction at crop growth stages: a case study of spring maize in semi-arid regions of northern China. Comput. Electron. Agric. 2022; 199: 107155.
34. Ma, J., Zhang, C., Li, S., Yang, C., Chen, C., Yun, W. Changes in vegetation resistance and resilience under different drought disturbances based on NDVI and SPEI time series data in Jilin province. Remote Sens. 2023; 15 (13): 3280.
35. Fathi-Taperasht, A., Shafizadeh-Moghadam, H., Sadian, A., Xu, T. T., Nikoo, M. R. Drought-induced vulnerability and resilience of different land use types using time series of MODIS-based indices. Int. J. Disast. Risk Re. 2023; 91: 103703.
36. Mann, H. B. 1945. Nonparametric tests against trend. Econometrica 13:245-259.
37. Sen P. K. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968; 63: 1379-1389.
38. Feizi, V., Mollashahi, M., Farajzadeh, M., Azizi, G. Spatial and temporal trend analysis of temperature and precipitation in Iran. ECOPERSIA. 2014; 2 (4): 727-742.
39. Pogačar, T., Žnidaršič, Z., Vlahović, Ž., Črepinšek, Z., Sušnik, A. (2022). Grassland model-based evaluation of drought indices: a case study from the Slovenian Alpine region. Agronomy. 2022; 12 (4): 936.
40. He, C., Zhang, Q., Li, Y., Li, X., Shi, P. Zoning grassland protection area using remote sensing and cellular automata modelling, a case study in Xilingol steppe grassland in Northern China. J. Arid Environ. 2005; 63 (4): 814-826.
41. Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore III, B., Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004; 91 (2): 256-270.
42. Penereiro, J. C., Badinger, A., Maccheri, N. A., Meschiatti, M. C. Distribuições de Tendências Sazonais de Temperatura Média e Precipitação nos Biomas Brasileiros. Rev. Bras. Meteorol. 2018; 33: 97-113.
43. de Oliveira, R. G., Júnior, L. C. G. V., da Silva, J. B., Espíndola, D. A., Lopes, R. D., Nogueira, J. S., Curado, L. F., Rodrigues, T. R. Temporal trend changes in reference evapotranspiration contrasting different land uses in southern Amazon basin. Agric. Water Manag. 2021; 250:106815.
44. Karimi, Z., Talebi. A. An Integration of Remote Sensing and the DPSIR Framework to Analyze the Land-Use Changes in the Future (Case study: Eskandari Watershed). ECOPERSIA. 2023; 11 (4): 319-336.
45. Mohammadzadeh, A., Mahdavi Damghani, A., Vafabakhsh J., Deihimfard, R. Sustainability assessment of wheat and barley agro ecosystems by quantitative indices: case study for Maragheh – Bonab plain, East Azerbaijan province. J. Agroecol. 2016; 6 (2), 321-339.
46. Mirgol, B., Nazari, M., Eteghadipour, M. Modelling climate change impact on irrigation water requirement and yield of winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and fodder maize (Zea mays L.) in the semi-arid Qazvin Plateau, Iran. Agriculture. 2020; 10 (3): 60.
47. Zhang, R., Shangguan, W., Liu, J., Dong, W., Wu, D. Assessing meteorological and agricultural drought characteristics and drought propagation in Guangdong, China. J. Hydrol. Reg. Stud. 2024; 51:101611.
48. Dehghani Sargazi, H., Bazrafshan, O., Zamni, H. Investigation of the effect of meteorological-agricultural drought on rainfed wheat yield in Iran using SPEI. Nivar. 2021; 45 (114-115): 15-26.
49. Manafi Mollayousefi, M., Hayati, B. Evaluating and comparing the sustainability of selected Crops production in East Azerbaijan province. Journal of Agricultural Science and Sustainable Production. 2022; 33 (3): 269-288.
50. Sholihah, R. I., Trisasongko, B. H., Shiddiq, D., La Ode, S. I., Kusdaryanto, S., Panuju, D. R. Identification of agricultural drought extent based on vegetation health indices of landsat data: case of Subang and Karawang, Indonesia. Procedia Environ. Sci. 2016; 33: 14-20.
51. Raja, A., Gopikrishnan, T. Drought analysis using the standardized precipitation evapotranspiration index (SPEI) at different time scales in an arid region. Eng. Technol. Appl. Sci. Res. 2022; 12(4): 9034-9037.
52. Musei, S. K., Nyaga, J. M., Dubow, A. Z. SPEI-based spatial and temporal evaluation of drought in Somalia. J. Arid Environ. 2021; 184: 104296.
53. Piao, S. L., Mohammat, A., Fang, J., Cai, Q., Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006; 16: 340-348.
54. Zhang, X., Goldberg, M., Tarpley, D., Friedl, M. A., Morisette, J., Kogan, F., Yu, Y. Drought induced vegetation stress in southwestern North America. Environ. Res. Lett. 2010; 5: 024008.
55. Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D., Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 2016; 531 (7593): 229-232.
56. Chen, T, De Jeu, R., Liu, Y. Y., Van der Werf, G. R., Dolman, A. J. Using satellite-based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ. 2014; 140: 330-338.
57. Guo, L., Zuo, L., Gao, J., Jiang, Y., Zhang, Y, Ma, S., Zou, Y., Wu, S. Revealing the fingerprint of climate change in interannual NDVI variability among biomes in Inner Mongolia, China. Remote Sens. 2020; 12: 1332.