Investigating the Relationship between Meteorological and Agricultural Droughts in Northwest Iran

Document Type : Original Research

Authors
Department of Arid and Mountainous Regions Reclamation, University of Tehran, Iran
Abstract
Aims: This study aims to assess the variations in the trend of drought using indices in Northwest Iran as vegetative cover plays a vital role in environmental stability.

Materials & methods: To achieve this goal, the study includes three stages: determining the Standardized Precipitation Evapotranspiration Index (SPEI) using monthly temperature and precipitation data from meteorological stations, calculating the Vegetation Health Index (VHI) based on derived datasets from MODIS satellite images for the period 2001-2021, and examining the correlation between indices to determine the duration of vegetation cover response to water scarcity and identify trends at 3, 6, 9, and 12-month time scales.

Findings: Based on the results of the Mann-Kendall test, the stable (48.56%) and increasing (50.43%) trends cover most of the studied areas and a smaller area had a decreasing trend (1.01%) trend. Additionally, positive correlations between VHI and SPEI were observed across all time scales. The SPEI-3 months showed the highest Pearson correlation (R2= 0.83) with VHI values for the growing season, indicating that water accumulation in the past 3 months had the greatest impact on vegetation cover.

Conclusion: This study, while emphasizing the necessity of monitoring and managing drought, with a focus on vegetation cover status in Northwest Iran, especially in East Azerbaijan province, introduces drought indices as a crucial component of the drought monitoring system.
Keywords

Subjects


1. Zhang, Z., Chang, J., Xu, C., Zhou, Y., Wu, Y., Chen, X., Jiang, S., Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years. Sci. Total Environ. 2018; 635: 443-451.
2. Ahmadi, S., Azarnivand, H., Khosravi, H., Dehghan, P., Behrang Manesh, M. Assessment the effect of drought and land use change on vegetation using Landsat data. Desert, 2019; 24 (1), 23-31.
3. Li, H., Xie, M., Wang, H., Li, S., Xu, M. Spatial heterogeneity of vegetation response to mining activities in resource regions of North western China. Remote Sens. 2020; 12: 3247.
4. Dehghan, P., Azarnivand, H., Khosravi, H., Zehtabian, G., Moghaddamnia, A. An ecological agricultural model using fuzzy AHP and PROMETHEE II approach. Desert, 2021; 26(1), 71-83.
5. Xu, M., Kang, S., Chen, X., Wu, H., Wang, X., Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018; 639: 1220-1232.
6. Huho, J. M., Kosonei, R. C. Understanding extreme climatic events for economic development in Kenya. IOSR J. Env. Sci. Toxicol. Food Technol. 2014; 8: 14-24.
7. Hossain, M. L., Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021; 30, e01768.
8. Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015; 21 (9): 3520-3531.
9. McKee, T. B., Doesken, N. J., Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, January. 1993;17-22: 179-184.
10. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 2010; 23 (7): 1696-1718.
11. Kogan, F. N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990; 11: 1405-1419.
12. Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., Verbist, K. Satellite remote sensing for water resources management: potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018; 54 (12): 9724-9758.
13. Holben, B. N., Tucker, C. J., Fan, C. J. Spectral assessment of soybean leaf area and lear biomass. Photogramm. Eng. Remote Sens. 1980; 46: 651-656.
14. Heydari Alamdarloo, E., Khosravi, H., Dehghan Rahimabadi, P., Ghodsi, M., The effect of climate fluctuations on vegetation dynamics in West and Northwest of Iran. Desert Ecosystem Engineering Journal. 2021; 3 (2): 19-28.
15. Safari Shad, M., Ildoromi, A. Akhzari, D. Drought monitoring using vegetation indices and MODIS data (case study: Isfahan province, Iran). Journal of Rangeland Science. 2017; 7 (2): 148-159.
16. Bagheri, S., Tamartash, R., Jafari, M., Tatian, M.R., Malekian, A., Peyrvand, V. Studying MODIS satellite data capability to prepare vegetation canopy in Qazvin plain rangelands. Journal of Rangeland. 2021; 15 (1): 24-36.
17. Dehghan Rahimabadi, P., Azarnivand, H. Assessment of the effect of climate fluctuations and human activities on vegetation dynamics and its vulnerability. Theor. Appl. Climatol. 2023; 1-16.
18. Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., Skalák, P. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol. 2014; 115: 563-581.
19. Tirivarombo, S., Osupile, D., Eliasson, P. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth. Parts A/B/C. 2018; 106: 1-10.
20. Bazrafshan, O., Mahmoudzadeh, F., Asgarinezhad, A., Bazrafshan, J. Adaptive evaluation of SPI, RDI, and SPEI indices in analyzing the trend of intensity, duration, and frequency of drought in arid and semi-arid regions of Iran. Irrigation Sciences and Engineering (JISE), 2019; 42 (3): 117-131.
21. Hosseini Pazhouh, N., Ahmadaali, K., Shokoohi, A. R. Assessment of standardized precipitation and standardized precipitation-evapotranspiration indices for wet period detection. J. Soil Water Conserv. 2019; 25 (6): 207-221.
22. Wang, F., Lai, H., Men, R., Sun, K., Li, Y., Feng, K., Tian, Q., Guo, W., Du, X., Qu, Y. Spatial and temporal evolutions of terrestrial vegetation drought and the influence of atmospheric circulation factors across the Mainland China. Ecol. Indic. 2024; 158: 111455.
23. Prasad, A. K., Chai, L., Singh, R. P., Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006; 8: 26-33.
24. Kogan, F., Salazar, L., Roytman, L. Forecasting crop production using satellite- based vegetation health indices in Kansas, USA. Int. J. Rem. Sens. 2012; 33: 2798-2814.
25. Hanafi, A. Study of climatic characteristics of the northwestern region of Iran based on multivariate statistical analysis. J. Clim. Change. 2022; 13 (50): 135-150.
26. Razmi, R., Sotoudeh. F., Salahi B. Spatio-temporal analysis and zoning of probable occurrence of wet and dry years in North West of iran. 2015; 15 (49): 74-57.
27. Mishra, A. K., Singh, V. P. Drought modeling-a review. J. Hydrol. 2011; 403 (1-2): 157-175,
28. Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Bashir, B., Elbeltagi, A., Széles, A., Alsalman, A, Harsanyi, E. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci. Rep. 2022; 12 (1): 8838.
29. Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N., Chau, K.W. Predicting standardized streamflow index for hydrological drought using machine learning models. Eng. Appl. Comput. Fluid Mech. 2020; 14 (1): 339-350.
30. Bhuiyan, C., Singh, R. P., Kogan, F. N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International J Appl. Earth Obs. Geoinf. 2006; 8 (4): 289-302.
31. Choi, M., Jacobs, J. M., Anderson, M. C., Bosch, D. D. Evaluation of drought indices via remotely sensed data with hydrological variables. J. Hydrol. 2014; 476: 265-273.
32. Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Begueria, S., Trigo, R., Lopez-Moreno, J. I., Azorin-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Moran-Tejeda, E., Sanchez-Lorenzo, A. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 2013; 110 (1): 52-57.
33. Xiujia, C., Guanghua, Y., Jian, G., Ningning, M., Zihao, W. Application of WNN-PSO model in drought prediction at crop growth stages: a case study of spring maize in semi-arid regions of northern China. Comput. Electron. Agric. 2022; 199: 107155.
34. Ma, J., Zhang, C., Li, S., Yang, C., Chen, C., Yun, W. Changes in vegetation resistance and resilience under different drought disturbances based on NDVI and SPEI time series data in Jilin province. Remote Sens. 2023; 15 (13): 3280.
35. Fathi-Taperasht, A., Shafizadeh-Moghadam, H., Sadian, A., Xu, T. T., Nikoo, M. R. Drought-induced vulnerability and resilience of different land use types using time series of MODIS-based indices. Int. J. Disast. Risk Re. 2023; 91: 103703.
36. Mann, H. B. 1945. Nonparametric tests against trend. Econometrica 13:245-259.
37. Sen P. K. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968; 63: 1379-1389.
38. Feizi, V., Mollashahi, M., Farajzadeh, M., Azizi, G. Spatial and temporal trend analysis of temperature and precipitation in Iran. ECOPERSIA. 2014; 2 (4): 727-742.
39. Pogačar, T., Žnidaršič, Z., Vlahović, Ž., Črepinšek, Z., Sušnik, A. (2022). Grassland model-based evaluation of drought indices: a case study from the Slovenian Alpine region. Agronomy. 2022; 12 (4): 936.
40. He, C., Zhang, Q., Li, Y., Li, X., Shi, P. Zoning grassland protection area using remote sensing and cellular automata modelling, a case study in Xilingol steppe grassland in Northern China. J. Arid Environ. 2005; 63 (4): 814-826.
41. Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore III, B., Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004; 91 (2): 256-270.
42. Penereiro, J. C., Badinger, A., Maccheri, N. A., Meschiatti, M. C. Distribuições de Tendências Sazonais de Temperatura Média e Precipitação nos Biomas Brasileiros. Rev. Bras. Meteorol. 2018; 33: 97-113.
43. de Oliveira, R. G., Júnior, L. C. G. V., da Silva, J. B., Espíndola, D. A., Lopes, R. D., Nogueira, J. S., Curado, L. F., Rodrigues, T. R. Temporal trend changes in reference evapotranspiration contrasting different land uses in southern Amazon basin. Agric. Water Manag. 2021; 250:106815.
44. Karimi, Z., Talebi. A. An Integration of Remote Sensing and the DPSIR Framework to Analyze the Land-Use Changes in the Future (Case study: Eskandari Watershed). ECOPERSIA. 2023; 11 (4): 319-336.
45. Mohammadzadeh, A., Mahdavi Damghani, A., Vafabakhsh J., Deihimfard, R. Sustainability assessment of wheat and barley agro ecosystems by quantitative indices: case study for Maragheh – Bonab plain, East Azerbaijan province. J. Agroecol. 2016; 6 (2), 321-339.
46. Mirgol, B., Nazari, M., Eteghadipour, M. Modelling climate change impact on irrigation water requirement and yield of winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and fodder maize (Zea mays L.) in the semi-arid Qazvin Plateau, Iran. Agriculture. 2020; 10 (3): 60.
47. Zhang, R., Shangguan, W., Liu, J., Dong, W., Wu, D. Assessing meteorological and agricultural drought characteristics and drought propagation in Guangdong, China. J. Hydrol. Reg. Stud. 2024; 51:101611.
48. Dehghani Sargazi, H., Bazrafshan, O., Zamni, H. Investigation of the effect of meteorological-agricultural drought on rainfed wheat yield in Iran using SPEI. Nivar. 2021; 45 (114-115): 15-26.
49. Manafi Mollayousefi, M., Hayati, B. Evaluating and comparing the sustainability of selected Crops production in East Azerbaijan province. Journal of Agricultural Science and Sustainable Production. 2022; 33 (3): 269-288.
50. Sholihah, R. I., Trisasongko, B. H., Shiddiq, D., La Ode, S. I., Kusdaryanto, S., Panuju, D. R. Identification of agricultural drought extent based on vegetation health indices of landsat data: case of Subang and Karawang, Indonesia. Procedia Environ. Sci. 2016; 33: 14-20.
51. Raja, A., Gopikrishnan, T. Drought analysis using the standardized precipitation evapotranspiration index (SPEI) at different time scales in an arid region. Eng. Technol. Appl. Sci. Res. 2022; 12(4): 9034-9037.
52. Musei, S. K., Nyaga, J. M., Dubow, A. Z. SPEI-based spatial and temporal evaluation of drought in Somalia. J. Arid Environ. 2021; 184: 104296.
53. Piao, S. L., Mohammat, A., Fang, J., Cai, Q., Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006; 16: 340-348.
54. Zhang, X., Goldberg, M., Tarpley, D., Friedl, M. A., Morisette, J., Kogan, F., Yu, Y. Drought induced vegetation stress in southwestern North America. Environ. Res. Lett. 2010; 5: 024008.
55. Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D., Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 2016; 531 (7593): 229-232.
56. Chen, T, De Jeu, R., Liu, Y. Y., Van der Werf, G. R., Dolman, A. J. Using satellite-based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ. 2014; 140: 330-338.
57. Guo, L., Zuo, L., Gao, J., Jiang, Y., Zhang, Y, Ma, S., Zou, Y., Wu, S. Revealing the fingerprint of climate change in interannual NDVI variability among biomes in Inner Mongolia, China. Remote Sens. 2020; 12: 1332.