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Aims: This study aims to assess the variations in drought trends using indices in Northwest 
Iran, as vegetative cover plays a vital role in environmental stability.
Materials & Methods: To achieve this goal, the study includes three stages: determining 
the Standardized Precipitation Evapotranspiration Index (SPEI) using monthly temperature 
and precipitation data from meteorological stations, calculating the Vegetation Health Index 
(VHI) based on derived datasets from MODIS satellite images for the period 2001-2021, and 
examining the correlation between indices to determine the duration of vegetation cover 
response to water scarcity and identify trends at 3, 6, 9, and 12-month time scales.
Findings: Based on the results of the Mann-Kendall test, the stable (48.56%) and increasing 
(50.43%) trends cover most of the studied areas, and a smaller area had a decreasing trend 
(1.01%). Additionally, positive correlations between VHI and SPEI were observed across all 
time scales. The SPEI-3 months showed the highest Pearson correlation (R2= 0.83) with VHI 
values for the growing season, indicating that water accumulation in the past three months 
significantly impacted vegetation cover.
Conclusion: This study emphasizes the necessity of monitoring and managing drought, 
focusing on vegetation cover status in the Northwest of Iran, especially in East Azerbaijan 
Provinces. It also introduces drought indices as a crucial component of the drought 
monitoring system.
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NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, 
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Introduction
Vegetative cover is vital in soil conservation, 
climate regulation, hydrological processes, 
carbon cycles, and ecosystem stability  [1]. 
It reflects the dynamic characteristics of 
terrestrial ecosystems. It is considered a 
sensitive indicator of ecosystems’ response 
to climate change and human activities, 
fundamentally indicating the overall 
state of the ecological environment [2, 3, 4]. 
Spatial-temporal changes in vegetation 
cover patterns alter the regional landscape 
and impact ecosystem structure, leading 
to weaker resilience in maintaining and 
enhancing ecosystem sustainability [5]. 
Therefore, understanding the impact of 
water availability on vegetation cover 
growth in connection with climate changes 
is essential for predicting the dynamicity 
of vegetation cover against environmental 
changes. It also aids in developing effective 
policies and strategies for environmental 
protection and sustainability.
One of the climatic events affecting 
vegetation cover is vegetation drought. 
Recurring droughts are a primary cause of 
rangeland degradation and a significant 
factor in reducing agricultural crop yields, 
transforming forested lands into shrub-
dominated landscapes [6]. However, since 
vegetation cover exhibits specific resistance 
to drought, the effect of drought on vegetation 
growth has a distinct time lag [7]. Vegetation 
growth affected by previous drought is called 
the lag time effect. For instance, a drought 
that occurred one month, three months, or 
even twelve months ago stresses vegetation 
growth. In other words, vegetation growth 
may not be primarily due to current 
weather conditions, but the initial climatic 
conditions significantly impact vegetation 
growth. Therefore, considering the effects 
of time lag is crucial when investigating 
the mechanisms of the interactive effects of 
climate and vegetation cover [8].

Several indices, such as SPI [9] and SPEI 
[10], have been introduced to assess 
drought based on meteorological station 
precipitation data. However, these methods 
are effective only for evaluating drought 
conditions near meteorological stations 
due to limited spatial coverage, low station 
density, and uneven distribution of stations, 
especially in semi-arid regions, where 
precipitation varies significantly over short 
distances [11]. In contrast, remote sensing 
(RS) data become the primary data source 
for defining drought indices due to their 
extensive spatial coverage and high public 
accessibility [12]. Drought assessment indices 
based on remote sensing data include VHI 
[13], NDVI [14], VCI, TCI [15], and EVI [16, 17].
Researchers have utilized various drought 
indices in their studies over the years. Potop 
et al. [18] analyzed spatial characteristics of 
drought and their trends at different time 
scales based on the SPEI index in the Czech 
Republic using data from 184 stations. 
These researchers reported a negative 
trend for most stations, indicating a stable 
or increasing trend for drought events. 
Tirivarombo et al. [19] compared SPI and SPEI 
in the Kafue River basin in northern Zambia. 
The results showed that temperature 
change is crucial in determining drought 
phenomena. Bazrafshan et al. [20] compared 
SPI, SPEI, and RDI indices in analyzing 
drought trends in dry and semi-dry regions 
of Iran for warm and dry climates, reporting 
an increasing trend (below -2.61) for most 
regions and a decreasing trend (above 
2.61+) for cold and dry climates. Hosseini 
Pezhuh et al. [21] used the standardized 
precipitation index (SPI) and Standardized 
Evapotranspiration Precipitation Index 
(SPEI) for drought detection and evaluation 
in the Kesilan watershed. They reported that 
SPEI performed better than SPI, especially at 
the end of the spring and summer seasons. 
Wang et al. [22] focused on China in a study 
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aiming to investigate spatial and temporal 
developments in vegetation drought. They 
used the Vegetation Health Index (VHI) to 
identify vegetation drought and the Pixel-
based Trend Identification Method (PTIM) 
to examine its spatial and temporal evolution 
from 1982 to 2020. The results indicated 
a decreasing trend in vegetation drought 
during the study period, with the most 
prominent reduction observed in spring. 
Other researchers have also reported a high 
correlation between VHI and vegetation 
cover performance, especially during critical 
growth stages [23, 24].
Different researches show that changes 
in climate affect plant growth. Therefore, 
it is essential to understand how climate 
influences vegetation cover across different 
environmental conditions. Since the impact 
of climate on vegetation cover has not been 
investigated in the northwestern Provincess 
of Iran, this study specifically focuses on 
meteorological and agricultural droughts, 
aiming to comprehend the occurrence trend 
of drought in Northwest Iran, as these two 
types of droughts are more directly related 
to the examination of climatic factors and 
vegetation cover performance.

Material & Methods
Study Area
The northwest of Iran has different climate 
regimes and air masses, so diverse climate 
zones appear in its territory [25]. In this 
study, the Northwest of Iran encompasses 
the Provincess of East Azerbaijan, West 
Azerbaijan, Zanjan, and Kurdistan. The 
elevation gradually increases from east to 
west and decreases around Lake Urmia. The 
climate transitions from semi-arid to arid 
from north to south, and the temperature 
gradually rises from north to south. Due 
to its topographical features, location, and 
elevation, this region exhibits environmental, 
plant, and animal diversity adapted to the 

current climate conditions. The region’s long-
term fluctuation and variability in climatic 
factors can have significant environmental, 
agricultural, economic, and even human 
consequences [25]. The primary land covers in 
the study area include grasslands (56.81%), 
deserts (32.90%), agricultural lands (4.78%), 
water bodies (2.18%), and sparse shrublands 
(1.68%) (Figure 1).
Data collection
To calculate the SPEI, monthly temperature 
and precipitation data from meteorological 
stations in Ardabil, Khorram Dareh, Khoy, 
Maragheh, Sanandaj, Tabriz, Urmia, and 
Zanjan were utilized. These selected 
stations were chosen due to their common 
statistical period, location within the study 
area, or proximity to the study region. The 
geographical coordinates of each station 
are provided in Table 1. For the Vegetation 
Health Index (VHI), data from the MOD13Q1 
sensor of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) for 2000 to 
2023 were employed.
Estimation of Drought Indices
Drought indices are essential for evaluating 
drought severity, modeling, and predicting 
drought [27]. Each of these indices is 
associated with one or more variables that 
impact environmental characteristics such 
as precipitation, temperature, river flow, 
soil moisture, and other variables [28]. Most 
drought indices are tailored to specific 
geographical areas and objectives, making 
their selection for achieving accurate and 
comprehensive analyses challenging due to 
the inherent complexities of the phenomenon 
[29]. To overcome this challenge, considering 
the enhanced role of temperature in drought 
propagation due to climate change [10], 
the SPEI was employed. Additionally, the 
Vegetation Health Index (VHI) was chosen 
among satellite-based indices due to its 
consideration of local biophysical factors 
(soil and slope) and climatic conditions [30, 31].
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Estimation of  Standardized Precipitation 
Evapotranspiration Index (SPEI)
The SPEI is employed to quantify the 
intensity and duration of drought events 

[32]. SPEI is based on the difference between 
precipitation (water supply) and potential 
evapotranspiration (water demand), making 
it applicable for assessing meteorological 

Table 1) Meteorological station characteristics.

Row Meteorological Station Latitude (N) Longitude (E) Elevation (m)

01 Ardebil 48° 17’ 35° 15’ 1332

02 Khorramdareh 49° 11’ 36° 11’ 1575

03 Khoy 44° 58’ 36° 33’ 1103

04 Maragheh 46° 16’ 37° 24’ 1477.7

05 Sanandaj 47° 00’ 35° 17’ 1373.4

06 Tabriz 46° 16’ 38° 05’ 1361

07 Urmia 45° 05’ 37° 32’ 1315.9

08 Zanjan 48° 29’ 36° 41’ 1663

Figure 1) Geographical location of the study area in Iran.
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and hydrological droughts [10]. Drought 
indices based on meteorological data benefit 
from the advantage of long-term temporal 
scales [33]. SPEI is scalable for time intervals 
ranging from 1 to 48 months or more. SPEI-1 
represents drought conditions in the current 
month, while SPEI-12 reflects the overall 
annual drought conditions. The multiscale 
nature of SPEI enables the identification of 
various types of droughts and their impacts 
on different systems [32].
The SPEI equation was processed for four time 
scales (3, 6, 9, and 12 months) using functions 
defined in MATLAB. MATLAB is a computational 
software platform that encompasses over 600 
mathematical operation functions extensively 
utilized in climate analysis projects [34].
Estimation of vegetation health index (VHI)
VHI has been proposed to quantify 
vegetation drought using several years of 
vegetation water-deficit situations [35]. VHI 
is a linear combination of the Vegetation 
Condition Index (VCI) and the Temperature 
Condition Index (TCI), simultaneously 
reflecting vegetation cover’s greenness and 
temperature status. The VHI was computed 
according to the Eqs. (1), (2), and (3) using 
ArcMap 10.8.2 [30].

VHI = 0.5 × (VCI) + 0.5 × (TCI) Eq. (1)

Eq. (2)

Eq. (3) 

In the provided equations, EVIi represents the 
EVI value of a pixel in year i, while EVImax and 
EVImin denote the maximum and minimum 
values of EVI for the same pixel from 2001 
to 2019, respectively. Moreover, LST stands 
for Land Surface Temperature, where LSTi 

signifies the LST value of a pixel in the year I, 
and LSTmax and LSTmin indicate the maximum 
and minimum values of LST for the same 
pixel from 2001 to 2019, respectively.
Trend analysis
Trend determination tests are divided into 
two types: parametric and nonparametric. 
The trend test applied in this study is the 
nonparametric Mann-Kendall (MK) test. The 
Mann-Kendall test is effectively used to detect 
natural fluctuations or trends in the changes 
of a process. This rank-based test is suitable 
for detecting non-linear trends [36]. The 
advantage of the nonparametric test, such as 
the Mann-Kendall test, over parametric tests 
like the t-test is its suitability for time series 
that do not follow a normal distribution and 
for datasets with missing or deleted values 
[37]. The Mann-Kendall test is calculated 
based on the Eq. (4).

Eq. (4) 

In which xi and xj represent consecutive data, 
n denotes the length of the time series, and 
the sign function is computable as Eq. (5):

Eq. (5)

The mean E(S) and variance Var(S) of the 
statistic S were calculated as Eq. (6) and Eq. (7):

Eq. (6) 

Eq. (7) 

Where tp is the number of sequences for 
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the pth value, and p is the number of values 
in the sequences. The second part in the 
above equation represents an adjustment 
for sensitive sequences or data. The 
standardized statistic ZM for the test is 
obtained from the Eq. (8):

Eq. (8)

The positive value of the ZM trend indicates an 
increasing trend, while the negative value of ZM 
indicates a decreasing trend in the time series 
[38]. The threshold of statistical significance at 
a five percent level is |ZM| > 1.96. The Earth 
Trends Modeler (ETM) in Terrset software 
was employed to conduct this test.
Additionally, the correlation of VHI concerning 
multitemporal SPEI was determined using the 
coefficient of determination based on Eq. (9).

Eq. (9)

In the given equation, R2 stands for the 
coefficient of determination. RSS and TSS 
represent the Sum of Squares of Residuals 
and the Total Sum of Squares, respectively. 
Higher values of these parameters mean more 
substantial agreement between the compared 
data, as elucidated by Pogačar et al. [39].
Moreover, the slope coefficient of the VHI 
changes concerning multitemporal SPEI was 
ascertained using Eq. (10).

Eq. (10)

In the provided equation, Xi and Yi denote the 
values of the independent and dependent 

variables in the ith year, respectively. The n 
represents the years during the study period 
(n=20).
The negative slope value indicates that the 
dependent variable exhibits an increasing 
trend, while a positive slope value signifies a 
decreasing trend in the dependent variable.

Findings
Maximum vegetation cover
According to the map presented in Figure 2, 
the highest percentage of vegetation cover 
during the study period is observed in April, 
while the lowest is in June.

Figure 2) Map of vegetation picked in different 
months.

Vegetation trend
Figure 3 illustrates the trend of vegetation 
changes in the study areas. According to the 
map, yellow pixels indicate a “no-change” 
trend, green pixels represent an “increasing 
trend” (drying trend), and red pixels 
indicate a “decreasing trend” or relief from 
drought conditions. The stable (48.56%) 
and increasing (50.43%) trends cover most 
of the studied areas, while a few pixels have 
been allocated decreasing trend (1.01%) 
conditions.
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Figure 3) Map of vegetation trend over time.

The results of the Mann-Kendall test are 
presented in Table 2. According to the 
provided information, East Azerbaijan 
Provinces exhibits the highest increasing 
trend (5.68), while Kurdistan Provinces 
shows the lowest (4.44).
Moreover, on average, the maximum and 
minimum changes in the vegetation cover trend 
are observed in East Azerbaijan (1.79) and 
Kurdistan (1.02). Also, the Standard Deviation 
(SD) shows that the most changes occur in West 
Azerbaijan (1.01), while the most minor change 
occurs in Zanjan (0.87), which represent the 
heterogeneous and homogeneous changes, 
respectively, in these Provincess.

Figure 4) Maps of correlation between VHI and Multitemporal SPEI.
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Figure 5) Correlation between VHI and multitemporal 
SPEI in different Provincess

Correlation between VHI and Multitemporal 
SPEI
The temporal response of vegetation cover 
to drought and the spatial distribution of 
correlation between VHI and multitemporal 
SPEI is illustrated in Figure 4. A significant 
positive correlation exists across the entire 
study area for all temporal scales. The spatial 
distribution of correlation coefficients 
gradually increases towards the southeast 
for all studied temporal scales. The lowest 
correlation values are observed in the 6- 
and 9-month scales. However, (SPEI-3), 

Figure 6) Maps of the absolute value of slope in the linear regression VHI and multitemporal SPEI
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calculated for the growing season, exhibits 
the highest Pearson correlation with VHI 
values (R2= 0.83). In this particular scale, the 
northeastern and southwestern parts of the 
study area are identified as the most sensitive 
regions to drought conditions, being more 
prone to drier conditions (e.g., drought).
As shown in Figure 5, the correlation value 
decreases when the time scale increases. The 
highest correlation of the studied indices is 
observed at the 3-month scale, attributed 
respectively to the Provincess of Kurdistan, 
Ardabil, West Azerbaijan, East Azerbaijan, 
and Zanjan. Consequently, the 3-month scale 
is more suitable for determining the intensity 
and duration of vegetation-related drought.

Table 2) Results of the MK test.

Provinces Min Max Mean SD

Ardabil -4.51 4.96 1.57 0.94

East Azerbaijan -4.57 5.68 1.79 0.96

Kurdistan -4.77 4.44 1.02 0.90

West Azerbaijan -5.03 5.48 1.54 1.01

Zanjan -4.57 4.64 1.14 0.87

Linear regression between VHI and 
multitemporal SPEI
Figure 6 illustrates the maps of the absolute 
value of the linear regression slope between 
VHI and Multitemporal SPEI. It is observed 
that as the time scale increases, the absolute 
value of the slope in the linear regression 
between VHI and multitemporal SPEI 
decreases. The highest and lowest slopes of 
changes are attributed to the 3-month and 
9-month scales, respectively.
According to the presented data in Figure 7, 
the highest magnitude of slope changes is 
observed in the 3-month scale, respectively, 
belonging to the Provincess of Kurdistan, 
East Azerbaijan, Ardabil, West Azerbaijan, 
and Zanjan.

Figure 7) The absolute value of slope in the linear 
regression between VHI and multitemporal SPEI in 
different Provincess

Discussion
The highest and lowest percentages of 
vegetation cover were observed in East 
Azerbaijan and Kurdistan Provincess, 
respectively, during the study period. 
These results emphasize the importance 
of vegetation mapping or classification 
in assessing natural environments, as it 
provides valuable information by quantifying 
vegetation cover over a specific period. Such 
information is crucial for natural resource 
management and the implementation of 
environmental conservation and restoration 
programs [40,41].
Changes in drought trends, including no 
change, stability, and increasing trends, were 
evident across the study area. An increasing 
trend indicates a decline in vegetation cover 
over time, suggesting that drought is a 
recurring and growing phenomenon in the 
region. Some researchers have identified 
global warming [42], regional land use [43], and 
land cover changes [44] as potential drivers of 
increasing trends. Moreover, some studies 
have highlighted the role of global warming 
in assessing the sustainability of wheat and 
barley farming systems in the Maragheh-
Bonab plain of East Azerbaijan Provinces 
[45]. Although it is challenging to attribute the 
identified trends to specific factors accurately, 
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temperature variations have been introduced 
as a fundamental factor influencing climate 
variability in arid and semi-arid regions 
like Iran [46]. Previous researchers have 
proposed potential evapotranspiration, 
actual evapotranspiration, and temperature 
as primary factors in agricultural drought 
[47]. The results of this study illustrated a 
general increasing trend in Northwest Iran, 
consistent with Dehghani Sargazi et al. [48]. 
The increasing trend in East Azerbaijan 
Provinces, which has the largest area in 
the Northwest of Iran, may exacerbate 
the conditions of agricultural lands in this 
Provinces. Some research sources have 
indicated that 46% of agricultural lands 
in East Azerbaijan Provinces are located 
in the Lake Urmia basin, and this lake is at 
risk of drying up due to the expansion of 
agricultural activities in its watershed and 
the lack of natural water rights [49]. Therefore, 
it is essential to develop a plan to reduce the 
potential effects of drought on agricultural 
production by considering a combination 
of climate variables, including precipitation 
and temperature. 
The significant positive correlation 
observed across the entire region for all 
studied time scales was confirmed. It is 
crucial to mention that the effectiveness of 
SPEI in assessing vegetation drought and, 
consequently, biomass production has been 
validated by previous studies [10]. Similarly, 
the effectiveness of VHI in understanding 
various aspects of vegetation cover [10, 24] and 
monitoring the onset of vegetation drought 
as an early warning system has also been 
confirmed [50], reinforcing the validity of the 
results in this section.
Raja and Gopikrishnan [51] compared and 
analyzed the performance of SPEI at time 
scales of 1, 3, 6, 9, and 12 months of temporal 
and spatial variation at 12 weather stations 
in Barmer arid region from 1979 to 2013. A 
modified MK test is used to determine the 

significance of drought-characteristic trends. 
The results showed that with the increase 
of the time scale, the temporal changes in 
SPEI became more consistent. The MK test 
showed that SPEI showed decreasing trends 
in 1and 3-month scales but increasing trends 
in 3, 6, and 12-month scales.
In this case, Musei et al. [52] used SPEI in 1, 
3, 6, and 12-month time scales to evaluate 
the spatio-temporal changes of drought 
occurrence in Somalia. Temporal changes 
in drought showed a decreasing trend in 
severity and an increasing trend in drought 
duration with increasing time scales of SPEI.
The Northeast and southwest parts of 
the study area were the most sensitive 
(vulnerable) regions to drought. Hence, 
these areas should be prioritized in 
drought planning. The 3-month time lag of 
vegetation response to climatic conditions 
was observed. One reason is the presence 
of annual plants and the growth form of 
grasses, which mainly cover the region and 
are dependent on short-term moisture. 
In other words, in the 3-month scale, the 
influence of climate factors on vegetation 
cover is more pronounced, and vegetation 
responds more quickly to climate in this 
scale. The time delay in the response of 
vegetation to climatic variables has been 
reported in various studies. For instance, a 
time lag of about three months was reported 
for the Eurasian continent [53]. In contrast, 
positive relationships between vegetation 
cover and rainfall in one month were 
reported in the southwestern United States 
[54], Australia inland [55-56], Yun–Gui Plateau, 
and Inner Mongolia [57].
The highest slope of changes was observed 
at the 3-month scale. The areas with 
higher slope changes are more sensitive 
or vulnerable to drought. Based on this, it 
can be inferred that SPEI-3 indicates the 
dominant drought pattern in the northwest 
part of Iran.
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The results of this study contribute to 
a better understanding of the evolution 
of agricultural drought in Northwest 
Iran in spatial and temporal dimensions 
during 2001- 2020. Additionally, future 
development plans can be directed toward 
supporting regions prone to agricultural 
drought using the obtained information.

Conclusion
This study investigated the physical 
characteristics of agricultural drought 
in the Northwest of Iran. The results of 
this study indicate that the time lag in 
vegetation response to drought is three 
months. The necessity of paying attention 
to current water resource management and 
adopting long-term regional policies in East 
Azerbaijan Provinces was highlighted due to 
an increasing trend in drought. Correlation 
results between VHI and SPEI confirmed the 
existence of a significant positive correlation 
throughout the region for all time scales, 
especially with 3-month time scales. These 
results highlighted the importance of 
implementing land use policies about climate 
change and considering the relationships 
between climate (processes that affect 
vegetation cover) and vegetation. However, 
considering other biophysical factors, such as 
soil characteristics and land characteristics, 
and paying attention to groundwater in 
the analytical framework can improve the 
accuracy and usefulness of the results. Also, 
considering that drought is the dominant 
phenomenon limiting vegetation growth 
in arid and semi-arid areas, calculating the 
slope of changes between indicators helps 
predict the occurrence of drought in the 
future.
The exposure of the northeastern and 
southwestern parts of the study area to 
drought and the need for measures to reduce 
the effects of drought were also reported. 
Overall, the findings of this research can 

serve as scientific evidence for predicting 
future drought trends, implementing 
optimal management strategies, and 
enhancing preparedness and resilience 
against drought.
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