References
1. IPCC Fourth Assessment Report (AR4). Climate change 2007. 32 pp. https://www.lrl.mn.gov/docs/2015/other/150681
2. Panol, T.J., Lloret F. Climatic warning hazard and wildfire occurrence in coastal eastern Spain. Climate Change 1998; 38: 345-357. https://doi.org/10.1023/A:1005316632105
3. Solomon S. "IPCC. Summary for Policymakers, Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007. 011. https://wedocs.unep.org/20.500.11822/30761
4. Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R., Shao M.A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants biotechnologically and sustainably improving agriculture and the environment in arid regions of the globe. Crit. Rev. Biotechnol. 2009; 29: 131-151. https://doi.org/10.1080/07388550902869792
5. Huang Z., Zou ZR., He C., X, He ZQ., Zhang Z.B., Li J.M. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 2011; 339:391–399. https://www.researchgate.net/publication/226629217
6. Allen M. F., Edith B., Jennifer L., Lansing A., Kurt S., Pergitzer B., Ron L., Hendrick C., Roger W., Ruess D., and Collins S.L. Responses to chronic N fertilization of ectomycorrhizal pinon but not arbuscular mycorrhizal juniper in a pinon-juniper woodland. J. Arid Envir. 2010; 74:1170-1176. https://doi.org/10.1016/j.jaridenv.2010.05.001
7. Bárzana, G., & Carvajal, M. (2020). Genetic regulation of water and nutrient transport in water stress tolerance in roots. J. Biotechnol. 324, 134-142. https://doi.org/10.1016/j.jbiotec.2020.10.003
8. Li, S., Yang, L., Huang, X., Zou, Z., Zhang, M., Guo, W., ... & Zhou, L. (2023). Mineral Nutrient Uptake, Accumulation, and Distribution in Cunninghamia lanceolata in Response to Drought Stress. Plants 12(11), 2140. https://doi.org/103390/plants12112140.
9. Sterling, T. M. (2005). Transpiration: Water movement through plants. Journal of Natural Resources and Life Sciences Education 34(1), 123-123. https://doi.org/10.2134/jnrlse.2005.123
10. Hussain, M., Farooq, M., Lee, D.J. 2017. Evaluating the role of seed priming in improving drought tolerance of pigmented and non‐pigmented rice. J. Agro. Crop Sci. 2017; 203(4): 269-276. https://doi.org/10.1111/jac.12195
11. Wasaya A, Abbas T, Yasir TA et al (2021) Mitigating drought stress in sunflower (Helianthus annuus L.) through exogenous application of β-Aminobutyric acid. J. Soil Sci. Plant Nutr. 21: 936–948. https://doi.org/10.1007/s42729-021-00412-4
12. Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005; 444: 139–158. https://doi.org/10.1016/j.abb.2005.10.018
13. Alizadeh A. The relationship between water, soil and plants, Imam Reza Mashhad University Publications. 2008; 470 p. https://www.gisoom.com/book/1665415/
14. Kafi M, Barzouni, A, Salehi M, Kamandi A, Masoumi A and Nabati J. Physiology of environmental stress in plants, Mashhad University Press 2009; 467 p. https://www.gisoom.com/book/1650340/
15. Soro, A., Lenz, P., Roussel, J. R., Larochelle, F., Bousquet, J., & Achim, A. (2023). The phenotypic and genetic effects of drought-induced stress on apical growth, ring width, wood density and biomass in white spruce seedlings. New Forests 54(5), 789-811. https://doi.org/10.1007/s11056-022-09939-5
16. Bhattacharya, A. (2021). Effect of soil water deficit on growth and development of plants: a review. Soil Water Deficit and Physiological Issues in Plants, 393-488. https://www.researchgate.net/publication/349593534_
17. Camarero J. J., Gazol, A., Sánchez-Salguero, R., Sangüesa-Barreda, G., Díaz-Delgado, R., & Casals, P. Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agri. For. Meteorol. 2020; 291, 108078. https://doi.org/10.1016/j.agrformet.2020.108078
18. Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change 2016; 134:163–176. https://link.springer.com/article/10.1007/s10584-015-1531-y
19. Wang B, Chen T, Xu G, Wu M, Zhang G, Li C, Wu G (2018) Anthropogenic management could mitigate declines in growth and survival of Qinghai spruce (Picea crassifolia) in the east Qilian Mountains, northeast Tibetan Plateau. Agri. For. Meteorol. 2018; 250–251:118–126. https://doi.org/10.1016/j.agrformet.2017.12.249
20. Allen CD, Macaulady AK, Chenchouni H. (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 2010; 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001
21. Galiano L., Martínez-Vilalta, J., & Lloret, F. The drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 2010; 13, 978-991. https://doi.org/10.1007/s10021-010-9368-8
22. Svenning J.-C. and Magård, E. Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol. Conserv. 1999; 88(2): 173-182. https://doi.org/10.1016/S0006-3207(98)00106-2
23. Lesani, Mohammad Reza. Yew. Research Institute of Forests and Rangelands, Iran 1999; 220 pp. https://press-rifr.areeo.ac.ir/book_1095.html
24. Mossadegh A. Tree (Taxus baccata L.). University of California Berkeley Research Report 1993. https://jes.ut.ac.ir/article_25547.html
25. Jam Ashkezari S., Fotouhifar, K.B. and Farzaneh, M. Identification of some endophytic fungi of common yew trees (Taxus baccata) in Iran. Rostaniha 2014; 15(1): 50-64. https://rostaniha.areeo.ac.ir/article_100844.html
26. Plesa I. M., Al Hassan, M., González-Orenga, S., Sestras, A. F., Vicente, O., Prohens, J. & Sestras, R. E. Responses to drought in seedlings of European larch (Larix decidua Mill.) from several Carpathian provenances. Forests 2019; 10(6), 511. https://doi.org/10.3390/f10060511
27. Kolb P.F., & Robberecht R. High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiol., 1996; 16(8), 665-672. https://doi.org/10.1093/treephys/16.8.665
28. Barchet G.L., Dauwe R., Guy R.D., Schroeder W.R., Soolanayakanahally, R. Y., Campbell, M. M., & Mansfield, S. D. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiol. 2014; 34(11): 1203-1219. https://doi.org/10.1093/treephys/tpt080
29. Schueler, S., George, J.P., Karanitsch-Ackerl, S., Mayer K., Klumpp, R.T. & Grabner M. Evolvability of drought response in four native and non-native conifers: Opportunities for forest and genetic resource management in Europe. Front. Plant Sci. 2021; 12, 648312. https://doi.org/10.3389/fpls.2021.648312
30. Rezaei Karmozdi, M., Tabari M. & Sadati, S.E. Effect of biochar on physiological characteristics of European yew (Taxus baccata) seedling in different light intensities. Ecopersia 2022; 10(1), 61-69. http://ecopersia.modares.ac.ir/article-24-54831-en.html
31. Ahmadi K., Alavi, S. J. & Hosseini, S. M. Modeling response curves of European yew (Taxus baccata L.) using HOF models along the environmental gradient in the north of Iran. Acta Ecol. Sin. 2022; 42(4), 383-391. https://doi.org/10.1016/j.chnaes.2022.04.001
32. Robakowski P. & Wyka T. (2009). Winter photoinhibition in needles of Taxus baccata seedlings acclimated to different light levels. Photosynthetica 2009; 47, 527-535. https://link.springer.com/article/10.1007/s11099-009-0078-4
33. Rybus-Zajac M. (2005). Oxidative stress generation in Taxus baccata leaves affected by Pestalotiopsis funerea under sunny and shaded conditions. Dendrobiology 2005; 54, 51-56. https://www.researchgate.net/publication/286030690_Oxidative_stress_generation_in_Taxus_baccata_leaves_affected_by_Pestalotiopsis_funerea_under_sunny_and_shaded_conditions
34. Devaney, J.L., Whelan, P. M., & Jansen, M. A. Light responses of yew (Taxus baccata L.); does size matter? Trees 2015; 29, 109-118. https://www.researchgate.net/publication/273279002
35. Peragón, J.L.N., Matias, L.F.B., & Simón, J.P. Restoration of European yew (Taxus baccata L.) in Mediterranean mountains: the importance of seedling nursery fertilization and post-planting light levels. For. Syst. 24(3), e041-e041. http://dx.doi.org/10.5424/fs/2015243-07464
36. Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change 2: 851–870 (2011). https://doi.org/10.1002/wcc.147
37. Zarik L., Meddich A., Hijri M., Hafidi M., Ouhammou A., Ouahmane L., Duponnois R. and Boumezzough A. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C. R. Biol. 2016; 339(5-6): 185-196. https://pubmed.ncbi.nlm.nih.gov/27180108/
38. Roohi E., Sio-se Marde A. Study on gas exchange in different wheat (Triticum aestivum L.) genotypes under moisture stress conditions. Seed and Plant J. 2008; 24 (1): 45–62. https://spj.areeo.ac.ir/article_110778.html?lang=en
39. Ghanbary E., Tabari M., Mirabolfathy, M., Modarres Sanavi S., Rahaie, M., Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For. Pathol. 2017, 47 (5), e12353. https://doi.org/10.1111/efp.12353
40. Webb D.B. The introduction and trail of exotic tree species in the semi-arid zone of Iran, Oxford, UK: Oxford Forestry Institute (OFI), 1973; 134 pp. http://lib.frtc.gov.np/catalog/opac_css/index.php?lvl=notice_display&id=3879
41. Boor Z., Hosseini, S.M., Soleimani A., Taheri Abkenar K. Investigation of survival, growth and physiology of six forestry species under different irrigation regimes. Journal Forest Research and Development (JFRD). 2022 8(1): 97-111. https://jfrd.urmia.ac.ir/article_121167.html?lang=en
42. Gindaba J., Rozanov A., Negash L. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For. Ecol. Manage. 2004, 201 (1), 119-129. https://doi.org/10.1016/j.foreco.2004.07.009
43. Ibrahim A.H., 2013. Tolerance and avoidance responses to salinity and water stress in Calotropis Procera and Suaeda aegyptiaca. Turk. J. Agric. For. 2013; 37: 352- 360. http://journals.tubitak.gov.tr/agriculture/
44. Boutraa T., 2010. Effects of water stress on root growth, water use efficiency, leaf area and chlorophyll content in the desert shrub Calotropis procera, Int. J. Environ. Sci. 5(1): 124-132. https://www.semanticscholar.org/paper/Effects-of-water-stress-on-root-growth%2C-water-use-Boutraa/518f5482a9093402698ee7230306e86cae6fefdf
45. Esmaeili Sharif M., Zamani Kebrabadi B, Dehghani M, 2021. The effect of Arbuscular mycorrhizal fungi on the morphological characteristics of one-year seedlings of Cerasus mahaleb L. under drought stress. J. For. Wood Prod. 2021; 74(1):15-28. https://jfwp.ut.ac.ir/article_81566.html
46. Arji I. and Arzani, K. Evaluation of growth responses, and proline accumulation of three Iranian native olive cultivars under drought stress. J. Agric. Nat. Resour. 2004; 10(2): 91-100. https://ecc.isc.ac/showJournal/672/1346/13450
47.Yousef B. and Modir Rahmati A. R. Evaluation of growth, and yield of black poplar (Populus nigra L.). clones under drought stress period in comparative populetum of Sanandaj. Iranian Journal of Forest and Poplar Research (JFPR) 26(2): 276- 290. https://ijfpr.areeo.ac.ir/article_116755.html?lang=en
48. Ravanbakhsh, M., Babakhani, B., & Ghasemnezhad, M. (2023). Growth performance and defense response of Fraxinus excelsior L. seedlings to drought stress. Iranian Journal of Forest (IJF) 15(3), 243-258. https://civilica.com/doc/1774723
49. Rasheed, F.; Gondal, A.; Kudus, K.A.; Zafar, Z.; Nawaz, M.F.; Khan, W.R.; Abdullah, M.; Ibrahim, F.H.; Depardieu, C.; Pazi, A.M.M.; et al. Effects of Soil Water Deficit on Three Tree Species of the Arid Environment: Variations in Growth, Physiology, and Antioxidant Enzyme Activities. Sustainability 2021, 13, 3336. https://doi.org/10.3390/su13063336
50. Jia, H., Guan, C., Zhang, J., He, C., Yin, C., & Meng, P. (2022). Drought effects on tree growth, water use efficiency, vulnerability and canopy health of Quercus variabilis-Robinia pseudoacacia mixed plantation. Front. Plant Sci. 13, 1018405. https://doi.org/10.3389/fpls.2022.1018405
51. Yokota A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C. and Akashi, K. Citrulline and DRIP-1 protein (Arge homolog) in drought tolerance of wild watermelon. Ann. Bot. 2002; 89: 825–832. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233801/
52. Alcazar R., Altabella, T., Marco F., Bortolotti C., Reymond M., Koncz C., Carrasco P. and Tiburcio, A.F. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal. Behav. 2011; 6:243–250. https://pubmed.ncbi.nlm.nih.gov/21330782/
53. Chen T.H.H. and Murata N. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants Author links open overlay pane. Trends Plant Sci., 2008; 13(9): 499-505. https://pubmed.ncbi.nlm.nih.gov/18703379/
54. Siose Mardeh A., Ahmadi A., Postini K., Ebrahimzadeh, H. 2004. Stomatal and non-stomatal factors controlling photosynthesis and its relationship with drought resistance in wheat cultivars. Iranian Journal of Agricultural Sciences 2004; 35(1): 106-93. https://www.sid.ir/paper/419609/fa
55. Bradbury, M. (1990). The effect of water stress on diurnal changes in photosynthesis and water relations of Sesbania sesban and Acacia nilotica. J. Arid. Environ. 18(3), 335-342. https://doi.org/10.1016/S0140-1963(18)30843-7
56. Urban, J., Matoušková, M., Robb, W., Jelínek, B., & Úradníček, L. (2023). Effect of Drought on Photosynthesis of Trees and Shrubs in Habitat Corridors. Forests, 14(8), 1521. https://doi.org/10.3390/f14081521
57. Galle A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol. 2007; 174(4): 799-810. https://pubmed.ncbi.nlm.nih.gov/17504463/
58. Yang Y., Liu Q., Han C., Qiao Y.Z., Yao X.Q. and Yin H.J. Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetic 2007; 45(4): 613-619. https://link.springer.com/article/10.1007/s11099-007-0106-1
59. Bertamini M., Zulini, L., Muthuchelian, K. and Nedunchzhian, N. Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L.C.V. Riesling) Plants. Photosynthetica, 2006; 44(1): 151-154. https://link.springer.com/article/10.1007/s11099-005-0173-0
60. Xu S.M., Liu L.X., Woo K.C. and Wang D.L. Changes in photosynthesis, Xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica, 2007; 45(3): 348-354. https://link.springer.com/article/10.1007/s11099-007-0059-4
61. Cai H., Biswas D.K., Shang A.Q., Zhao, L.J. and Li, W.D. Photosynthetic response to water stress and changes in metabolites in Jasminum sambac. Photosynthetica 2007; 45(4): 503-509. https://doi.org/10.1007/s11099-007-0087-0
62. Cechin I., Rossi S.C., Oliveirea V.C. and Fumis T.F. Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 2006; 44(1): 143-146. https://doi.org/10.1007/s11099-005-0171-2
63. Bhusal, N., Lee, M., Han, A. R., Han, A., & Kim, H. S. (2020). Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol. Manage.465, 118099. https://doi.org/10.1016/j.foreco.2020..118099
64. Zhao, Y., Wang, D., & Duan, H. (2023). Effects of Drought and Flooding on Growth and Physiology of Cinnamomum camphora Seedlings. Forests 14(7), 1343. https://doi.org/10.3390/f14071343
65. Rooki M., Tabari M., Sadati, S. E. Effect of water deficit on survival, growth, gas exchange and water relations of (Cupressus arizonica) and (C. sempervirens var. fastigiata) seedlings. Arid Biome 2017; 8(1): 49-58. https://aridbiom.yazd.ac.ir/article_1193.html?lang=en
66. Lüttschwager, D., & Jochheim, H. (2020). Drought primarily reduces canopy transpiration of exposed beech trees and decreases the share of water uptake from deeper soil layers. Forests, 11(5), 537. https://doi.org/10.3390/f11050537
67. Bidinger F.R., Mahalakshmi, V. and Rao, G.D.P. Assessment of drought resistance in pearl millet (Pennisetum americanum L.). I. Factors that affected yields under stress. II. Estimation of genotype response to stress. Aust. J. Agric. Res. 1987; 38:37-48. https://doi.org/10.1071/AR9870037
68. PASBAN, E. B. (2009). Evaluation of physiological indices, yield and its components as screening techniques for water deficit tolerance in oilseed rape cultivars. https://www.researchgate.net/publication/228510656_
69. Ditmarova L., Kurjak D., Palmroth S., Kmet J. & Strelcova, K. Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiol. 2009; 30: 205-213. https://doi.org/10.1093/treephys/tpp116
70. Bahmani M., Jalali Gh.A., Asgharzade A., Tabari M., & Sadati S.E. Gas exchange recovery of Calotropis procera Ait. seedling in different irrigation periods. Arid Biome. 2015; 4(2): 28-38. https://aridbiom.yazd.ac.ir/article_617.html?lang=en
71. Jinying L. Min, L., Yongmin M. & Lianying S. (2007). Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphus spinousa Hu.) seedlings. Front. Agric. China 2007; 1(4): 468-471. https://doi.org/10.1007/s11703-007-0077-9
72. Zarafshar M., Akbarinia M., Hosseini S.M. & Rahaei M. Drought resistance of wild pear (Pyrus boisseriana Buhse.). J. For. Wood Prod., 2016; 69 (1): 97-110. https://sid.ir/paper/162955/en
73. Azizi S, Kazemi Sangdehi A, Tabari M. Effect of Salinity on Growth and Gas Exchanges in Seedlings of Pinus nigra Subsp. Pallasiana. ECOPERSIA 2018; 6 (3) :171-178
URL: http://ecopersia.modares.ac.ir/article-24-16046-en.html
74. Ratnayaka H.H. and Kincaid, D. Gas exchange and leaf ultrastructure tinnevelly senna, Cassia angustifulia, under drought and nitrogen stress. Crop Sci. 2005; 45: 840-847. https://doi.org/10.2135/cropsci2003.737
75. Sisakht Nejad M., Zolfaghari, R. The Effect of Water Stress on Gas Exchange in Two Iranian Oak Species (Quercus brantii) and Vyvl (Quercus libani). Journal of Forest Ecosystems Researches [JFER] 2015; 1(2): 31-15. http://yujs.yu.ac.ir/jzfr/article-1-38-en.html
76. Karam F., Masaad R., Sfir T., Mounzer O., and Rouphael Y. Evapotranspiration and seed yield of field-grown soybean under deficit irrigation conditions. Agric. Water Manag. 2007; 75(3): 226-244. https://doi.org/10.1016/j.agwat.2004.12.015
77. Kiani S., Grieu P., Maury P., Hewezi T., Gentzbittel L. and Sarrafi A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2007; 114(2): 193- 207. https://pubmed.ncbi.nlm.nih.gov/17103138/
78. Ashraf M., Azmi A., Khan A., and Ala S. (1994). Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat [Triticum aestivum L.]. Acta Physiol. Plant. 1994; 16(3): 185-191. https://www.infona.pl/resource/bwmeta1.element.agro-article-fa2617f5-4874-4c0f-a585-45d61a4b3691
79. Fischer R., Rees D., Sayre K., Lu Z.M., Condon A., and Saavedra, A.L. Wheat yield progress is associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci. 1998; 38(6): 1467-1475. https://doi.org/10.2135/cropsci1998.0011183X003800060011x
80. Medrano H., Tomás, M., Martorell, S., Flexas, J., Hernández, E., Rosselló, J., Pou, A., Escalona, J.M. and Bota, J. From leaf to wholeplant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. The Crop J. 2015; 3(3): 220-228. https://doi.org/10.1016/j.cj.2015.04.002
81. Hadi Rad M., Assareh, M. H., Soltani, M. Water requirement and water use efficiency in (Eucalyptus flocktoniae (Maiden) Maiden and E. leucoxylon F. Muell.). Iranian Journal of Forest Poplar Research [IJFR] 2017; 25(3): 451-441. https://ijfpr.areeo.ac.ir/article_112878.html?lang=en
82. Gindaba J., Rozanov A. and Negash L. Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For. Ecol. Manage, 2005; 205(1): 127-138. https://doi.org/10.1016/j.foreco.2004.10.056
83. Azizi S., Tabari M., Hadian J., Fallah A.R., Modarres Sanavi, S.A.M. Physiological responses of common myrtle seedling Myrtus communis L. to multimicrobial inoculation under water deficit stress, Soil Biol. 2019; 7(2): 167-180. https://sid.ir/paper/241363/en
84. Epron D. & Dreyer E. Long-term effect of drought on photosynthesis of adult oak trees (Quercus petraea Liebl and Quercus robur L.) in a natural stand. New Phytol. 1993; 125(2): 381-389. https://doi.org/10.1111/j.1469-8137.1993.tb03890.x
85. Yoo C.Y., Pence H.E., Hasegawa P.M. and Mickelbart M.V. Regulation of transpiration to improve crop water use. CRC. Crit. Rev. Plant Sci. 2009; 28(6): 410-431. https://doi.org/10.1080/07352680903173175