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Aims: The common yew (Taxus baccata L.) is an endangered species in Iran. Considering 
the prospect of climate change and global warming in the coming years, research on the 
tolerance of its seedlings to drought stress can be helpful. 
Materials & Methods: This research was conducted on four-year-old common yew potted 
seedlings. For this purpose, the effect of drought stress (100% and 30% of field capacity 
(FC)) on the growth and physiological traits of common yew seedlings was carried out in a 
completely randomized design with three replications for six months. 
Findings: The results showed that survival, shoot growth, and root diameter growth of 
seedlings did not change under water deficit, but a significant adverse effect in most of the 
physiological variables (except for stomatal conductance) was found under stress (30% of 
FC); so, the activities of photosynthesis, transpiration, mesophyll conductance and water 
use efficiency decreased by 68.3%, 23.9%, 69.6% and 57.9%, respectively; On the contrary, 
intercellular CO2 increased by 4%. 
Conclusion: Due to their slow growth, water scarcity did not affect yew seedlings’ growth 
traits in the first year of the growing season. Since common yew seedlings need several years 
of care in the nursery to prepare for the transfer to the natural field, it is recommended that 
they be managed in well-watered conditions to better respond to physiological traits and 
more favorable growth in the coming growing years. 
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Introduction
According to the report of the World Climate 
Change Conference [1], the pattern of global 
warming has been started for years and will 
continue in the future. In recent years, climate 
change in the form of drought has affected 
all world regions. So, based on the results of 
climate change studies in the Mediterranean 
Sea basin, the decrease in temperature and 
precipitation or the shortage of water has 
always been associated with an increase 
in the risk of forest fires in the region. So, 
due to the adverse effects of temperature 
increase on the water cycle, drought stress 
will be significant in the future [2].
Drought stress is considered the most critical 
and limiting abiotic stress for plant growth, 
and it has been stated that other stresses are 
affected by this type of stress [3,4,5]. Drought 
stress also, depending on the intensity and 
duration of drought, causes changes in the 
growth and absorption of elements in the 
roots and disrupts their transfer to aerial 
organs [6,7,8]. Water deficit in plants occurs 
when the amount of water the plant loses 
through transpiration is more than the 
water absorbed by the roots [9, 10, 11]. The first 
reaction of plants to drought stress is to close 
the stomata to prevent transpiration and 
water loss. In this situation, stomatal closure 
and reduction in gas exchanges and plant 
growth occur by the abscisic acid hormone 
[12]. The growth and development of plants 
are the result of various vital activities, 
including water availability. If the required 
water is not supplied due to the reduction 
of the turgescence pressure in the growing 
cells, the growth of the plant is disturbed 
[13, 14, 15, 16], and in the case of severe water 
shortage, the survival and establishment of 
the plant are exposed to danger (17,21).
Common yew (Taxus baccata L.) belongs to 
the Taxaceae family and is an evergreen and 
non-resinous plant [22]. This species is shade-
loving and mixed with other forest species 

in the understory of humid forests in the 
Mediterranean region and some parts of Asia. 
In the forests of northern Iran, common yew 
is found at altitudes of 900-1800 m above 
sea level, from Astara to Aliabad. It is also 
present in the Zarrin Gol Ramian (Golestan 
Province), which consists of several almost 
pure stands [23]. Common yew grows in most 
soils but grows better in sedimentary soils 
and only grows well in solid and dry soils. 
The tolerance of common yew to air pollution 
is high, which is why it is generally used in 
parks and green spaces in cities [24]. The yew 
tree contains secondary metabolites such as 
taxol, considered the world’s most effective 
known anticancer medicine  [25]. 
Several researches have been conducted on 
the effect of drought or water scarcity on 
conifer species. In this regard, the research 
conducted on Larix decidua Mill [26], Pinus 
ponderosa [27], hybrid poplar genotypes [28], 
European larch and Norway spruce Douglas-
fir, silver fir [29] can be mentioned. This is even 
though no specific study has been reported 
so far regarding the response of common yew 
to drought stress. Of course, in recent years, 
regarding other environmental stresses, 
including radian and/or shade, there have 
been several types of research on seedlings 
of common yew, which can be referred to as 
research conducted by [30, 35]. Common yew 
is one of the endangered species in Iran. 
Considering the prospect of climate change 
and global warming in the coming years [36], 
research on the tolerance of its seedlings to 
drought stress can be helpful. For this reason, 
the present research targets this essential with 
common yew seedlings. We hypothesize that 
drought stress does not influence common 
yew seedlings’ growth characteristics but 
alters their physiological activities.

Materials & Methods
Research Design
This research was conducted on potted 
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seedlings of a four-year-old common yew 
(Taxus baccata L.). It is worth mentioning 
that, first, the collected seeds of common 
yew trees were sown in the nursery bed of 
Nowshahr Ecology Research Station, and in 
the fourth year, they were replanted in 3 kg 
plastic pots. The experiment was conducted 
in a completely randomized design with 144 
seedlings in two levels of drought stress (30% 
and 100% of field capacity (as a control) 
for six months. Determination of soil field 
capacity was done according to the weight 
method [37]. Before applying drought stress, 
growth traits (shoot height and root collar 
diameter) were measured, and at the end 
of the period, these indices were measured 
again. The amount of shoot growth and root 
diameter growth was determined
by subtracting the measurement of two 
periods. 
Measurements
A graduated ruler was used to measure 
the height with an accuracy of mm, and a 
digital caliper with an accuracy of 0.1 mm 
was used to measure the collar diameter. 

Also, at the end of the drought stress period, 
the survival of seedlings was checked, and 
their values were determined by calculating 
the ratio of the number of live seedlings 
to the number of seedlings before the 
stress (as a percentage). At the end of the 
period, physiological variables, including 
net photosynthesis rate (A), transpiration 
rate (E), stomatal conductance (Gs), and 
intracellular CO2 concentration (Ci) using a 
portable gas exchange device LI-6400 (LiCor 
Inc., Lincoln, USA) were measured. For this 
purpose, three seedlings were selected from 
each replication, and four fully developed 
and healthy leaves were selected from the 
upper part of each seedling. Measurements 
were made between 9 am and 12 am on a 
sunny day with a light intensity of 1400 
μmol.m-2 per second. Water use efficiency 
was calculated from photosynthesis to 
transpiration and mesophyll conductance 
from photosynthesis to intracellular CO2 
concentration [38]. 
Statistical Analysis
Kolmogorov-Smirnov’s and Levene’s tests 

Figure 1) A view of examined common yew seedlings: well-watered seedlings (left) and drought-stressed 
seedlings (right).
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were used to evaluate the normality and 
homogeneity of the results, respectively. The 
effects of drought were analyzed using an 
independent samples t-test at a significance 
of p = 0.05. All statistical analyses were 
carried out using SPSS (version 22.0).

Findings
Growth Traits & Gas Exchanges
The results (Figure 2) showed that drought 
stress did not significantly affect growth 
traits (shoot growth, root diameter growth, 
and survival). The range of shoot growth, 
root diameter growth, and survival were 
11.4-12.7 mm, 0.33-0.37 mm, and 84.7-
95.8%, respectively (Figure 2, a-c). The effect 
of drought stress on gas exchange indices 

(except stomatal conductance), such as 
photosynthesis rate, transpiration, mesophyll 
conductance, water use efficiency, and 
intercellular CO2, was statistically significant. 
At drought stress conditions or field capacity 
(FC) of 30%, the rates of photosynthesis, 
transpiration, mesophyll conductance, and 
water use efficiency decreased by 68.3, 23.9, 
69.6, 57.9%, respectively (Figure 3, a-e), and 
the amount of intercellular CO2 increased by 
4% (Figure 3, f).

Discussion
The present study found that drought stress 
had a negligible effect on the survival of 
common yew seedlings and caused an 11.1 
percent decrease in survival. Of course, 

Figure 2) Comparison of growth traits of common yew seedlings under drought stress.
Shoot growth (a), root diameter growth (b), and survival (c), using the t-test at a significant level of 5%.
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this difference in the survival rate between 
seedlings under drought stress (FC 30%) 
and well-irrigated seedlings (FC 100%) was 
not statistically significant. In the literature 
review, the adverse effects of drought stress 
on the survival rate of some forest species 
such as Quercus brantii [39], Eucalyptus 
aggregate and E. gunnii [40], Quercus 
castaneifolia and Q. persica [41], Eucalyptus 
camaldulensis and E. globulus [42], have been 
noted. 
In the present research, although the size 
of shoot length and root collar diameter 
of common yew seedlings showed a slight 
decrease with increasing irrigation period 
(drought severity), this difference between 
the two irrigation levels was not statistically 
significant. The research conducted with 
Calotropis Procera and Suaeda aegyptiaca 
[43] and Calotropis procera [44] indicated a 
decrease in the growth variables of seedlings 
under drought stress. Also, the negative 
effect of drought stress on the growth 
variables has been reported in Cerasus 
mahaleb [45], Olea europaea [46], Populus nigra 
[47], Fraxinus excelsior [48], Conocarpus erectus, 
Acacia modesta, Salix tetrasperma [49] and 
Quercus variabilis, Robinia pseudoacacia [50].
This research found that the physiological 
activities of common yew seedlings were 
strongly affected by drought stress, so the 
amounts of photosynthesis and transpiration 
decreased significantly. In general, the first 
response of plants to drought stress is to 
close the stomata and prevent water loss (by 
transpiration), reducing the absorption flow 
of carbon, carbon dioxide, and photosynthesis 
[51]. According to the literature review, water 
deficit causes a decrease in water potential 
and loss of turgescence, closing of stomata, 
and damage to the cell membrane along 
with protein degradation so that the rate of 
photosynthesis and transpiration decreases 
(52,53). The study of photosynthesis changes 
under drought stress can help to identify the 

influential factors in the tolerance of plants 
to this stress [54,55,56].
The reduction of photosynthesis in stressed 
seedlings can also be due to the defect in the 
effective absorption of CO2 through improper 
opening and closing of leaf stomata [57]. The 
effect of drought stress and/water deficit 
stress on the reduction of photosynthetic 
activities has also been reported previously 
on Picea asperata [58], Vitis vinifera [59], 
Acacia crassicarpa and Eucalyptus pellita 
[60], Jasminum sambac [61], Helianthus annuus 
[62], Larix kaempferi and Prunus sargentii 
[63], Cinnamomum camphora [64]. Also, based 
on the findings of Rooki et al. (65,66), the 
amount of transpiration decreased with the 
increase of drought severity in Cupressus 
arizonica and C. sempervirens var. fastigiate, 
Fagus sylvatica, which is in line with the 
results of the present study.
Drought stress reduces the size of stomatal 
pores [67]. Stomata are among the essential 
factors in plant water loss, and in general, 
stomatal conductance is one of the critical 
indicators for assessing water stress in 
plants. The plants prevent water losses by 
closing the stomata during drought stress. 
Closing the stomata is controlled by various 
factors, so one of the most important 
factors is the hormone abscisic acid (ABA). 
This hormone regulates plant growth 
and is stimulated under drought stress, 
increasing its amount. The stomata close 
after the increase of this hormone in plant 
tissues and cells to maintain or continue the 
plant’s resistance to drought. The opening 
of the stomata results from increasing the 
pressure potential of the protective cells of 
the stomata to the surrounding cells. In an 
experiment, it was found that in drought 
conditions, the stomatal conductance 
decreased significantly, and the genotypes 
(SLMO46 and Okapi) with the highest 
osmotic regulation ability (0.355 and 0.350 
cm.s-1, respectively) had the least amount of 
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stomatal conductance [68]. This reveals that 
these genotypes close their stomata when 
faced with drought stress to resist adverse 

environmental conditions.  In the findings 
published with Picea abies [69], Calotropis 
procera [70], Zizyphus spinous [71] and Pyrus 

Figure 3) Comparison of gas exchange indices of common yew seedlings under drought stress.
Photosynthesis rate (a), transpiration (b), stomatal conductance (c), mesophyll conductance (d), Water use 
efficiency  (e), and intercellular Co2 (f), using a t-test at a significant level of 5%.
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boisseriana [72], Pinus nigra [73], the reduction 
of photosynthesis and transpiration was 
attributed to the reduction of stomatal 
conductance. In the present study, stomatal 
conductance did not change significantly 
with the reduction of photosynthesis and 
transpiration.
Mesophyll conductance is a set of internal 
leaf mechanisms that lead to CO2 processing. 
The lower rate of photosynthesis and CO2 
processing in the presence of high amounts 
of intracellular CO2 means a low level of 
mesophyll conductance and the inability 
of mesophyll cells to use CO2 [74]. Similar to 
the results conducted on Quercus brantii 
and Q. libani [75], in the present study, water 
deficit stress caused a significant decrease 
in mesophyll conductance. In some studies, 
increasing CO2 concentration inside the 
stomata has been associated with a decrease 
in photosynthesis [76], which is in line with 
the results of the present study. On the 
other hand, in some studies, the stability 
of CO2 concentration in the stomata has 
been reported in water-deficit conditions 
[77]. Drought stress, in addition to reducing 
stomatal conductance, prevents CO2 
processing available to the plant by affecting 
the internal mechanisms of the leaf [78]. 
The increase or stability of intra-stomatal 
CO2 with the reduction of photosynthesis 
can be related to the plant’s inability to 
process CO2 or non-stomatal factors limiting 
photosynthesis [79].
Improving photosynthetic conditions and 
water use efficiency are essential variables 
when choosing suitable species for projects 
of afforestation/reforestation [80]. The current 
research results showed that the water use 
efficiency in yew seedlings decreased under 
drought stress. In the study of [81], with the 
increase of evaporation and transpiration, 
the amount of water use efficiency decreased 
in the two tested species, and under drought 
stress, it was higher in Eucalyptus leucxylon 

than in E. flocktoniae. E. leucxylon can 
produce more dry mass in drought-stress 
conditions. Similarly, a decrease in water use 
efficiency due to increased drought stress 
has also been reported for E. globulus and 
E. amanuensis [82]. This implies the relative 
closing of the stomata and the increase in the 
ratio of carbon dioxide entry to water exit 
from the stomata. When the water available 
is not enough for the plant, increasing 
the water use efficiency is considered an 
alternative strategy to improve growth 
performance under water deficit stress [83]. 
A study conducted on three species of oak 
(Quercus petraea, Q. pubescens, and Q. ilex) 
showed that the water use efficiency was 
higher in Q. ilex, a drought-adapted species 
[84]. Another study [75] also showed that Q. 
brantii has lower water use efficiency than 
Q. libani. Therefore, in drought-resistant 
species, with the increase of drought 
stress (due to the increase in the density of 
stomata and the reduction of the dimension 
of the stomata), the amount of transpiration 
decreases, and the efficiency of CO2 fixation 
increases, which is an influential factor in 
improving water use efficiency [84].

Conclusion
Similar to our hypothesis, it was proved 
that drought stress had no significant 
effect on the growth characteristics of yew 
seedlings, but it had a negative effect on 
the physiological activities of the seedlings. 
So, with the decrease in soil moisture, the 
amount of photosynthesis, transpiration, 
mesophyll conductance, and water use 
efficiency significantly decreased. In other 
words, the lack of influence of the growth 
traits of drought-stressed common yew 
seedlings in the first growing year was likely 
due to its slow growth. Since the seedlings 
need several years of care in the nursery 
before being transferred to the plantation 
site, it is recommended that they be grown 
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without water deficit stress for a better 
response of physiological traits and more 
favorable growth in the next growing years.
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