1. Lal R., Stewart B.A. Soil degradation a global threat. Adv Soil S .1990; vol.11: 12-16. https://www.amazon.com/Soil-Degradation-Advances-Science. Vol/dp/0387971262.
2. Leys J.F., Raupach M.R. Soil flux measurements using a portable wind erosion tunnel. Austr. J. Soil Res. 1991; 29: 4. 533-552. https://doi.org/10.1071/SR9910533.
3. Azimzadeh H. R, Fotouhi,F., The effect of desert pavement on soil wind erodibility and wind erosion threshold velocity Case Study: Ebrahimabad basin of Mehriz (Yazd). Quantitative Geomorphological Research. 2015; 4(2): 90-104. https://doi.org/10.22092/ijrdr.2014.5809.
4. Saad al-Din A. Akhzari D., Nora N. Predicting the Effects of Vegetation Management Scenarios on Wind Erosion Risk (Case Study South of Varamin Plain), J. Soil Water Conserv. 2010; Vol. 17, No. 1, pp. 63-80. https://doi.org/ 10.22059/JDESERT.2012.24744.
5. Naorem, A., Jayaraman, S., Dang, Y.P., Dalal, R.C., Sinha, N.K., Rao, C.S., Patra, A.K. Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications. Agronomy, 2023. 13, 220. https://doi.org/10.3390/agronomy13010220.
6. MohammadKhan S., Kashfi F. s. The directions of wind-blown sand transport in Ardestan region through the temporal comparison of sand dune morphometry and wind characteristics, Quantitative Geomorphology Researches. 2015; vol.4, 1 pp. 74. https://doi.org/ 20.1001.1.22519424.1394.4.1.5.8.
7. Khosravi F., Tazeh M., Saremi naeini Ma., Kalantari S. Evaluation and comparison of Image and GIS softwares with mechanical sieving in automatic particle-size distributions. Arid. Biome.2020; 9(2):29-42. https://doi.org/ 10.29252/ARIDBIOM.2020.1814.
8. Zamani S., Mahmoodabadi M. Effect of particle-size distribution on wind erosion rate and soil erodibility. Arch. Agron. Soil Sci. 2013; 59(12): 1743-1753. https://doi.org/10.1080/03650340.2012.748984.
9. Fister W., Ries J. B. Wind erosion in the central Ebro Basin under changing land use management. Field experiments with a portable wind tunnel, J Arid Environ. 2009; V73. pp 996-1004. https://doi.org/10.1016/j.jaridenv.2009.05.006.
10. Webb N. P., Galloza M. S., Zobeck T. M., Herrick J. E. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux, Aeolian Res. 2016; V20. pp. 45-58. http://dx.doi.org/10.1016/j.aeolia.2015.11.006.
11. Ayazi Z., Mesbahzadeh I., Ahmadi H., Mashhadi N. Investigation of sedimentometric power in geomorphological facies using wind tunnel and Orifar model (Case study: Aran Kashan), "J. Desert Manag. 2016; No. 8, pp. 70-83. https://doi.org/10.22034/JDMAL.2017.24663.
12. Noorzadeh Haddad M., Landi A. Mineralogy study and sensitivity of fine dust production sources to gravel cover in the soil surface, a case study of western lands of Khuzestan province, Geographical Data. 2018; Vol. 18, No. 64, pp. 61-74. URL: http://geographical-space.iau-ahar.ac.ir/article-1-2270-en.html.
13. Zamani S. Mahmoudabadi M. Effect of particle-size distribution on wind erosion rate and soil erodibility, Arch. Agron. Soil Sci. 2012; 1 issue, 1 pp. https://doi.org/10.1080/03650340.2012.748984.
14. Mohammadnia M. Amirahmadi A., Zangane Asadi M.A. Sensitivity of geomorphological facies using wind tunnel Case study: Gonabad TownShip, Phys Geogr. 2022; Vol.54, No.https://sid.ir/paper/1062155/en.
15. Mina M., Sameni A., Moosavi A.,Ghanbari Y. Prediction of wind erosion threshold Velocity Using Portable Wind Tunnel Combined with Machine Learning Algorithms. IJSWR.2023;54(6),933-947. HTTPS://DOI.ORG/10.22059/IJSWR.2023.354837.669506
16. Ministry of Jahad & Agriculture. Comprehensive studies of the dust center of Khuzestan province (soil and land resources). J. Nat. Resour. For. Rangelands; 2019.
17. Rezaei, M., Mina, M., Ostovari, Y., & Riksen, M. J. P. M. Determination of the threshold velocity of soil wind erosion using a wind tunnel and its prediction for calcareous soils of Iran. Land Degradation &Development. 2022; 33(13), 2340–2352. https://doi.org/10.1002/ldr.4309
18. Azimzadeh H., Ekhsati M. Wind erosion investigating the effect of physical and chemical properties of soil on Threshold velocity of wind erosion (case study: Yazd-Ardakan Plain). Natresour J. 2004 ; Volume 57, Number 2, pp. (in persian). https://sid.ir/paper/22890/fa
19. Zhang G., Li L., Tang W., Liu L., Shi P., Han X., Da J. Wind erosion from crusted playa surfaces by no saltation and with saltation: A comparison through laboratory wind tunnel experiments, Int. Soil Water Conserv. Res. 2023; Vol 11, P, 518-527. https://doi.org/10.1016/j.iswcr.2022.10.007.
20. Ahmadi H. Applied Geomorphology. second volume, desert and wind erosion, Third edition, Tehran: Tehran University Publication; 2017; 613 p.455-456.
21. Chepil W.S. Dynamics o wind erosion: III. The transport capacity of the wind. soil sci.1945; 60:475-480. http://dx.doi.org/10.1097/00010694-194510000-00004.
22. Azimzadeh H. R., Derakhshan, Z, & Shirgahi, F. Field scale spatio-temporal variability of wind erosion transport capacity and soil loss at Urmia Lake. Environ. Res.. 2022; 215, 114250. DOI: 10.1016/j.envres.2022.114250.
23. Kouchami-Sardoo, I., Shirani, H., Esfandiarpour-Boroujeni, I., Besalatpour, A. A., & Hajabbasi, M. A. Prediction of soil wind erodibility using a hybrid Genetic algorithm–Artificial neural network method. Catena. 2020; 187, 104315. https://doi.org/10.1016/j.catena.2019.104315.
24. Sirjani E., Sameni A., Moosavi, A. A., Mahmoodabadi, M., & Laurent, B. Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province, Iran. Geoderma, 2018; 333, 69-80. https://doi.org/10.1016/j.geoderma.2018.07.012.
25. Katheryn R. Kolesar a, Mark D. Schaaf, John W. Bannister a, Maarten D. Schreuder, Mica H. Heilmann b .Characterization of potential fugitive dust emissions within the Keeler Dunes, an inland dune field in the Owens Valley, California, United States.; Aeol. Res . 2022; 54(1):100765. https://doi.org/10.1016/j.aeolia.2021.100765.
26. Bullard, J. E., S. P. Harrison, M. C. Baddock, N. Drake, T. E. Gill, G. McTainsh, and Y. Sun. Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models. J. Geophys. Res. 2011; 116, F04034. https://doi.org/ 10.1029/2011JF002061.
27. Cahill, T. A., T. E. Gill, J. E. Reid, E. A. Gearhart, and D. A. Gillette. Saltating particles, playa crusts and dust aerosols from Owens (Dry) Lake, California; Earth Surf Processes Landforms; 1996. 21, 621–639. https://doi.org/10.1002/(SICI)1096-9837(199607)21:7<621::AID-ESP661>3.0.CO;2-E.
28. Gillette, D. A., Blifford, I. H., Jr., & Fryrear, D.W. The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils. Journal of Geophysical Research;1974, 79(27), 4068e4075. https://doi.org/10.1029/JC079i027p04068.
29. X. Zuo, C. Zhang, X. Zhang et al., Wind tunnel simulation of wind erosion and dust emission processes, and the influences of soil texture, ISWCR., 2023; 08.005. https://doi.org/10.1016/j.iswcr.
30. Stout, J.E. Dust and environment in the Southern High Plains of North America. J. Arid Environ. 2001; 47: 421-441. https://doi.org/10.1006/jare.2000.0732
31. Bullard J.E. & Livingstone, I. Interactions between aeolian and fluvial systems in dryland environments. 2022. Area 34, 8–1. https://doi.org/ 10.1111/1475-4762.00052.
32. Sweeney, M. R., Mason, Joseph A. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. 2013; J. Geophys. Res. Earth Surf. 118 (3), 1460–1471. https://doi.org/10.1002/jgrf.20101.
33. Abbasi H.R. Land sensitivity to wind erosion in Omidiyeh-Hendijan-Mahshahr dust sources, Technical report, Research Institute of Forests and Rangelands Iran. 2021; p.105.