Exploring the Effects of Nonstationary and Diverse Covariates on Extreme Hot Events

Document Type : Original Research

Authors
1 Assistant Prof. Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran, Email: anvari.t@gmail.com (Corresponding author).
2 Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
Abstract
Aims: Over the past twenty years, Iran has experienced a rise in extreme temperatures, particularly in hot events like extreme temperatures, as indicated by recent studies. This research seeks to analyze the annual maximum temperatures (AMT) in the dry Province of Kerman, Iran, focusing on both stationary (S) and nonstationary (NS) behavior.

Materials & Methods: Trend, homogeneity, and stationarity tests were utilized to identify the critical characteristics of the AMTs from 1979 to 2019. Frequency analysis of the AMTs was conducted using both stationary Generalized Extreme Value (S-GEV) and nonstationary GEV (NS-GEV) models, estimating distribution parameters through a maximum likelihood estimator(MLE). In addition to the time-varying NS-GEV (TNS-GEV) investigations, soil moisture (SM) was incorporated as a covariate.

Findings: Results demonstrate that, compared to the S-GEV case, the NS-GEV frequency analyses significantly impact the return values of the AMTs, leading to an increase. The NS-GEV estimations for 50-year return levels were significantly higher than those in the S-GEV. The study’s findings revealed that the average Akaike Information Criterion (AIC) for both the S-GEV and TNS-GEV estimations decreased from 110 to 71 across all 12 selected stations in Kerman Province. The AIC value for the NS-GEV with the soil moisture (SM) covariate was approximately 94. Thus, the TNS-GEV frequency analysis of AMTs resulted in improved AIC values compared to the NS-GEV with soil moisture as the covariate.

Conclusion: Given the nonstationary (NS) conditions caused by natural and/or human activities, it is recommended to utilize NS frequency analysis for estimating hydrologic variables across different design periods. It has been noted that NS-GEV frequency analyses lead to higher return levels of AMTs than S-GEV analyses.
Keywords

Subjects


1. AghaKouchak A., Nasrollahi N. Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resour Manag. 2010; 24:1229–1249. https://link.springer.com/article/10.1007/s11269-009-9493-3.
2. Akaike H. A new look at the statistical model identification. EEE T Automat Contr. 1974; 19(6): 716-723. https://ieeexplore.ieee.org/abstract/document/1100705/.
3. Aksu H. Nonstationary analysis of the extreme temperatures in Turkey. Dynam Atmos Oceans. 2021; 95, 101238. https://www.sciencedirect.com/science/article/pii/S037702652100035X.
4. Andreadis K.M., Lettenmaier D.P. Trends in 20th century drought over the continental United States, Geophys Res Lett. 2006; 33(10). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GL025711.
5. Anvari, S., Moghaddasi, M., & Bagheri, M. H. (2023). Drought mitigation through a hedging-based model of reservoir-farm systems considering climate and streamflow variations. Theor Appl Climato. 2022; 152(1-2): 723-737. https://link.springer.com/article/10.1007/s00704-023-04402-7.
6. Anvari S., Moghaddasi, M. Historical Changes of Extreme Temperature in relation to Soil Moisture over Different Climatic Zones of Iran. Stoch Env Res Risk A. 2023. https://link.springer.com/article/10.1007/s00477-023-02558-2.
7. Anvari, S., Moghaddasi M. Bagheri M. H. Drought mitigation through a hedging-based model of reservoir-farm systems considering climate and streamflow variations. Theor Appl Climato. 2023; 152(1-2):723-737. https://link.springer.com/article/10.1007/s00704-023-04402-7.
8. Archfield S.A., Hirsch R.M., Viglione A., Blöschl G. Fragmented patterns of flood change across the United States, Geophys Res Lett. 2016; 43: 10–232. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL070590.
9. Babaeian I., Karimian M., Modirian R. Mirzaei E. Future climate change projection over Iran using CMIP5 data during 2020–2100. NIVAR. J Meteorol Org., 2019: 43, 61–70. https://nivar.irimo.ir/article_86008_en.html.
10. Berghuijs W.R., Allen S.T., Harrigan S., Kirchner J.W. Growing spatial scales of synchronous river flooding in Europe, Geophys Res Lett. 2019a:46, 1423–1428. https:/ /agupubs.onlinelibrary.wiley.com /doi/full/10.1029/2018GL081883.
11. Cheng L., Gilleland E., Heaton M.J., AghaKouchak A. Empirical Bayes estimation for the conditional extreme value model. Stat. 2014: 3(1), 391-406. https: //onlinelibrary.wiley.com /doi/abs/10.1002/sta4.71.
12. Coles S., Bawa J., Trenner L., Dorazio P. An introduction to statistical modeling of extreme values. London: Springer; 2001 Dec. https://link.springer.com/book/10.1007/978-1-4471-3675-0.
13. Debele S.E., Bogdanowicz E., Strupczewski W.G. Around and about an application of the GAMLSS package to non-stationary flood frequency analysis. Acta Geophys. 2017;65, 885-892. https://link.springer.com/article/10.1007/s11600-017-0072-3.
14. Delavar, S., Anvari, S., Najafzadeh, M., & Fathian, F. (2023). A Review of Stationary and Non-Stationary Indices for Drought Monitoring in Iran and other Countries. Irrig Water Eng (10.22125/IWE.2023.404878.1729). https://www.waterjournal.ir/article_181549.html?lang=en.
15. Delgado J.M., Apel H., Merz B. Flood trends and variability in the Mekong river. Hydrol Earth Syst Sc. 2010; 14, 407-418. https://hess.copernicus.org/articles/14/407/2010/.
16. Donat M., Alexander L., Yang H., Durre I., Vose R., Dunn R., Willett K., Aguilar E., Brunet M., Caesar J., et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset, J Geophys Res-Atmos. 2013;118, 2098–2118. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrd.50150.
17. Donat M.G., Alexander L.V., YangH., Durre I., Vose R., Dunn R.J., Willett K.M., Aguilar E., Brunet M., Caesar J., HewitsonB. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J Geophys Res-Atmos. 2013; 118(5):2098-2118. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrd.50150.
18. Efron B. Maximum Likelihood and Decision Theory. Ann Stat. 1982; 10(2): 340- 356. https://www.jstor.org/stable/2240671.
19. Emmanouil S, Langousis A, Nikolopoulos EI, Anagnostou EN. The Spatiotemporal Evolution of Rainfall Extremes in a Changing Climate: A CONUS‐Wide Assessment Based on Multifractal Scaling Arguments. Earths Future. 2022; 10(3): e2021EF002539. https: // agupubs.onlinelibrary.wiley.com /doi/full/ 10.1029/ 2021EF002539.
20. Ganeshi N. G., Mujumdar M., Krishnan Goswami R.M. Understanding the linkage between soil moisture variability and temperature extremes over the Indian region. J Hydrol. 2020; 589, 125183. https://www.sciencedirect.com/science/article/abs/pii/S0022169420306430.
21. Gilleland E., Ribatet M., Stephenson A.G. A software review for extreme value analysis. Extremes (Boston). 2013; 16(1): 103–119. https://doi.org/10.1007/ s10687-012-0155-0. arXiv: 1011.1669v3.
22. Gilleland E., Katz R.W. extRemes 2.0: an extreme value analysis package in R. J Stat Softw. 2016; 72 (8): 1–39. https://doi.org/10.18637/jss.v072.i08.
23. Hao Z., Hao F., Singh V.P., Ouyang W. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. J Geophys Res-Atmos. 2017; 122(17): 9050-9059. https: // agupubs .onlinelibrary.wiley.com /doi/abs/10.1002/ 2017JD027030.
24. Hawkes P.J., Gonzalez-Marco D., Sánchez-Arcilla A., Prinos P. Best practice for the estimation of extremes: Areview. J Hydraul Res. 2008;46:324–332. https:// www.tandfonline.com/ doi/abs/ 10.1080 / 00221686.2008.9521965.
25. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi, A., Muñoz‐Sabater J., ... & Thépaut J.N. The ERA5 global reanalysis. Q J Roy Meteor Soc. 2020;146(730): 1999-2049. https:// rmets.onlinelibrary.wiley.com /doi /full /10.1002 /qj.3803 .
26. Hersbach H., deRosnay P., Bell B. Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report Series. 2018; 27, ECMWF, Reading, UK. https://centaur.reading.ac.uk/106838/.
27. Hohenegger C., Brockhaus P., Bretherton C. S., Schär C. The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Climate. 2009; 22(19): 5003-5020.23. https://journals.ametsoc.org/view/journals/clim/22/19/2009jcli2604.1.xml?tab_body=abstract-display.
28. IPCC, 2012. Glossary of terms. in: managing the risks of extreme events and disasters to advance climate change adaptation. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L. ... Midgley, P.M. (Eds.), A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 555–564.
29. Jowkar L, Panahi F, Sadatinejad S, Shakiba A. The Spatio-Temporal Variability of Extreme Temperature Using Gridded AgMERRA Dataset over the Bakhtegan-Maharloo Basin, Iran. ECOPERSIA. 2021; 9(3): 179-189. https://ecopersia.modares.ac.ir/ browse.php?a_id=45017&sid=24&slc_lang=en&ftxt= 0.
30. Ghavidel, R. Y., Rezaee, M., & Farajzadeh, A. M. (2016). The Application of Normalized Temperature Deviation (NTD) for Identification and Synoptic analysis of high extreme temperatures in south-east region of Iran. ECOPERSIA. 2016, 19(4): 123-140. https:// hsmsp.modares.ac.ir/ browse.php?a_id=12270&sid=21&slc_lang=en.
31. Katz R. Statistics of extremes in climate change. Climatic Change. 2010; 100(1):71-76. https://link.springer.com/article/10.1007/s10584-010-9834-5.
32. Katz R.W., Brown B.G. Extreme events in a changing climate: variability is more important than averages. Climatic change. 1992; 21(3): 289-302. https:// link.springer.com/article/ 10.1007/ BF00139728.
33. Katz R.W., Parlange M.B., Naveau P. Statistics of extremes in hydrology. Adv Water Resour. 2002; 25(8-12): 1287-1304. https:// www.sciencedirect.com/ science/ article /abs/ pii/ S0309170802000568.
34. Kendall M.G. Rank Correlation Methods. New York, NY: Oxford University Press. 1975. https://psycnet.apa.org/record/1948-15040-000.
35. Li L., Zhang L., Xia J., Gippel C. J., Wang R., Zeng S. Implications of modelled climate and land cover changes on runoff in the middle route of the south to north water transfer project in China. Water Resour Manag. 2015; 29(8): 2563-2579. https://link.springer.com/article/10.1007/s11269-015-0957-3.
36. Miralles D.G., Teuling A.J., Van Heerwaarden, C.C., Vilà-Guerau J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci. 2014; 7(5): 345-349. https://www.nature.com/articles/ngeo2141.
37. Mitchell T.D. Jones P.D. An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. Int J Climatol. J Roy Met soc. 2005; 25(6): 693-712. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/Joc.1181.
38. Moghaddasi M., Anvari S., Akhondi N. A trade-off analysis of adaptive and non-adaptive future optimized rule curves based on simulation algorithm and hedging rules. Theor Appl Climato. 2022;148(1): 65-78. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/Joc.1181.
39. Moghaddasi M., Anvari S., Mohammadi T. Comparison of extreme value theory approaches in temperature frequency analysis (case study: Arak plain in Iran). Arab J Geosci. 2022; 15(12):1-13. https://link.springer.com/article/10.1007/s12517-022-10409-7.
40. New M., Hulme M., Jones P. Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J Climate. 1999; 12(3): 829-856. https://link.springer.com/article/10.1007/s12517-022-10409-7.
41. Pettitt A.N. A non-parametric approach to the change point problem. J R Stat Soc Ser C, Appl Stat. 1979; 28(2): 126-135. https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2346729.
42. Razmi A., Golian S., Zahmatkesh Z. Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resour Manag. 2017; 31(7): 2065-2083. https://link.springer.com/article/10.1007/s11269-017-1619-4.
43. Salarijazi M., Ghorbani K., Mohammadi M., Ahmadianfar I., Mohammadrezapour O., Naser M.H., and Yaseen Z.M. Spatial-temporal estimation of maximum temperature high returns periods for annual time series considering stationary/nonstationary approaches for Iran urban area. Urban Climate, 2023; 49, 101504. https: //www.sciencedirect.com /science/article/abs /pii/S2212095523000986.
44. Sen P.K. Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc. 1968; 63(324):1379–1389. https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934.
45. Spinoni J., Naumann G., Vogt J.V. Pan-European seasonal trends and recent changes of drought frequency and severity, Global Planet Change. 2017; 148:113–130. https://www.sciencedirect.com/science/article/pii/S0921818116301801.
46. Teuling A.J., Seneviratne S.I. Contrasting spectral changes limit albedo impact on land‐atmosphere coupling during the 2003 European heat wave. Geophys Res Lett. 2008; 35(3). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL032778.
47. Trenberth K.E., Paolino D.A. The Northern Hemisphere sea-level pressure data set: trends, errors and discontinuities. Mon Wea Rev. 1980; 108(7): 856–872. https://journals.ametsoc.org/view/journals/mwre/108/7/1520-0493_1980_108_0855_tnhslp_2_0_co_2.xml.
48. Vanem E. Non-stationary extreme value models to account for trends and shifts in the extreme wave climate due to climate change. Appl Ocean Res. 2015; 52: 201-211. https://www.sciencedirect.com/science/article/abs/pii/S014111871500084X.
49. Westra S., Alexander L.V., Zwiers F. W. Global increasing trends in annual maximum daily precipitation. J climate. 2013; 26(11): 3904-3918. https://journals.ametsoc.org/view/journals/clim/26/11/jcli-d-12-00502.1.xml?tab_body=abstract-display.
50. Whan K., Zscheischler J., Orth R., Shongwe M., Rahimi M., Asare, E.O. Seneviratne S.I. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim Ext. 2015; 9:57-67. https://www.sciencedirect.com/science/article/pii/S2212094715000201.
51. Zamani R., Berndtsson R. Evaluation of CMIP5 models for west and southwest Iran using TOPSISI-based method. Theor Appl Climato. 2018; 137: 533–543. https://link.springer.com/article/10.1007/s00704-018-2616-0.