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Exploring the Effects of Nonstationary and Diverse
Covariates on Extreme Hot Events

Tarbiat Modares
University

ABSTRACT

Aims: Over the past twenty years, Iran has experienced a rise in extreme temperatures,
particularly in hot events like extreme temperatures, as indicated by recent studies. This
research seeks to analyze the annual maximum temperatures (AMT) in the dry Province of
Kerman, Iran, focusing on both stationary (S) and nonstationary (NS) behavior.

Materials & Methods: Trend, homogeneity, and stationarity tests were utilized to identify
the critical characteristics of the AMTs from 1979 to 2019. Frequency analysis of the AMTs
was conducted using both stationary Generalized Extreme Value (S-GEV) and nonstationary
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GEV (NS-GEV) models, estimating distribution parameters through a maximum likelihood
estimator(MLE). In addition to the time-varying NS-GEV (TNS-GEV) investigations, soil
moisture (SM) was incorporated as a covariate.

Findings: Results demonstrate that, compared to the S-GEV case, the NS-GEV frequency
analyses significantly impact the return values of the AMTs, leading to an increase. The NS-
GEV estimations for 50-year return levels were significantly higher than those in the S-GEV.
The study’s findings revealed that the average Akaike Information Criterion (AIC) for both
the S-GEV and TNS-GEV estimations decreased from 110 to 71 across all 12 selected stations
in Kerman Province. The AIC value for the NS-GEV with the soil moisture (SM) covariate was
approximately 94. Thus, the TNS-GEV frequency analysis of AMTs resulted in improved AIC
values compared to the NS-GEV with soil moisture as the covariate.

Conclusion: Given the nonstationary (NS) conditions caused by natural and/or human
activities, it is recommended to utilize NS frequency analysis for estimating hydrologic
variables across different design periods. It has been noted that NS-GEV frequency analyses
lead to higher return levels of AMTs than S-GEV analyses.

Keywords: Stationary/Nonstationary; Extreme temperature; GEV; Soil moisture covariate
Frequency analysis; Kerman.
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Introduction

Extreme weather events have become more
common and severe due to global climate
change, impacting human life worldwide.
Different regions of the world have
experienced different levels of warming in
the global surface temperatures. The highest
temperature values in the global annual
surface averages have mostly occurred in the
past 20 years . In these years, Iran has also
experienced unprecedented extreme hot
temperatures in various climatic regions.
The annual maximum temperature (AMT)
has increased over time, and its extremely
hot temperature distribution has shown
nonstationary (NS) behavior!?.

Extreme Value Theory (EVT) is a statistical
theory that deals with extreme events like
tail events or values lying beyond the range
of traditional observations. EVT describes
the distribution of the most extreme values,
either the highest or the lowest, in a data
set. EVT has been applied in various fields to
model and predict extreme events that may
have severe impacts, such as heat waves,
heavy rainfall B#, droughts>®], sea levels [,
and floods 1011,

Extreme climate studies can be divided into
two categories. One category is the extreme
climate indices, which use fixed or percentile
thresholds to measure the extremeness of
climate events. The other category is the
frequency analysis, which examines the
distribution of extreme values ['2. Two
standard methods for analyzing extreme
values (EV) are block maxima (BM) and the
peaks-over-threshold (POT). These methods
selectthe mostextreme valuesfromadataset
based on different criteria. The probability
distributions that fit these methods are
the generalized extreme value (GEV) and
the generalized Pareto distribution (GPD),
respectively [1316],

The extreme value analysis (EVA) can
be performed under both stationary (S)

and nonstationary (NS) assumptions.
These assumptions reflect whether the
characteristics of extreme events, such as
their frequency and intensity, are constant or
changing over time. In this regard, Maximum
likelihood estimation (MLE) is a simple
and widely used method for EVA studies.
MLE is a statistical technique that finds the
best-fitting probability distribution and its
parameters for a given data set based on the
likelihood function[”'2'718l, In addition, the
trend component for hydroclimate extremes
under NS conditions can be incorporated into
the GEV parameters (u: location, o: scale, and
€: shape) as a function of time or other hydro-
climate covariates. Soil moisture (SM) and
near-surface temperature are examples of
covariates that can be considered to establish
a link between extreme temperature and
land-atmosphere interactions [1924],

Some recent studies have investigated
the issue of nonstationary (NS) extreme
temperature using the GEV model with
different covariates. For instance, the NS-
GEV model was used to analyze the extreme
temperature of north-central India (NCI)
and evaluated the effect of long-term soil
moisture changes from 1948 to 20142,
The return levels of absolute extreme
temperatures in 50 stations in Turkey were
also calculated and examined in time, and the
teleconnection patterns of AO and NAO were
the possible trend drivers. These studies
demonstrate the significance and usefulness
of the NS-GEV model for analyzing and
forecasting extreme temperature events
under changing climatic conditions!?®,
Several studies have observed positive
trends in Iran's extreme temperatures and
related indices ?®?7], For example, the EVT
methods, such as block maxima (BM) and
peaks-over-threshold (POT), were utilized
to analyze the NS behavior of maximum
monthly temperature in the Arak plain of Iran
from 1901 to 2016 281, The return periods of



extremely hot temperatures were calculated
using long-term data from 41 urban areas
in Iran. The Generalized additive Models for
Location, Scale, and Shape (GAMLSS) were
applied to examine how the return period of
50 and 100 maximum temperatures changed
over time and space. Results revealed that the
maximum temperature time series showed
significant nonstationarity in 83% of urban
areas in Iran. The return levels of maximum
temperature increased over time and space,
indicating a warming trend in Iran*°.

Iran has a complex and variable temperature
behavior due to its arid and semi-arid
location, diverse climates, and landscapes.
This makes it challenging to cope with the
effects of climate change. However, most of
the previous studies on extreme temperature
in Iran have been limited in scope and
have yet to account for the effect of hydro-
climate variability in the temporal extreme
temperature distribution. Therefore, this
study addresses this gap by examining
the extremely hot temperature in Kerman
Province, located in southeastern Iran, which
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ranges from dry to humid climates. We apply
S-GEV and NS-GEV distribution functions with
time and soil moisture covariates to capture
the spatiotemporal changes in extremely hot
temperatures. Finally, we estimate the return
levels and analyze the regional differences in
extreme temperature.

Study Area and Datasets

Iran covers an area of 1,648,195 km? in
West Asia, and its location is between 24-
40°N latitude and 43-62°E longitude. The
country has a diverse topography, with an
average height of 5,137m above sea level.
Furthermore, the climate varies across
different regions of Iran. For example, the
central Provinces like Kerman have very hot
summers. The average daily temperature in
July is more than 38°C. Kerman Province,
the case study of this research, has a diverse
climate ranging from arid to humid and
from mountainous to coastal. The location of
Kerman Province and its 12 selected weather
stations are shown as follows (Figure 1).
The datasets of current research are as
follows:
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Figure 1) Geographic location of selected stations in Kerman Province, Iran [1. Anar, 2. Baft, 3. Bam, 4. Kahnooj,
5.Kerman, 6. Lalehzar, 7. Miandeh Jiroft, 8. Rafsanjan, 9. Shahdad, 10, Shahr Babak, 11. Sirjan, 12. Zarand ].



Station-based observations: The monthly
maximum temperature for 1979 to 2019
year for the 12 selected stations in Kerman
Province was obtained from the official
documents of the Iranian Ministry of
Energy. These data were used to validate the
maximum temperature data extracted from
the CRU datasets. As illustrated (Figure 2),
the boxplots of the maximum temperature
(Tmax) time series for each of the 12 stations
from 1979 to 2019.

As shown (Figure 2), boxplots with the
median marked by the central line and the
lowerandupperedgesrepresentthe 25thand
75th percentiles, respectively. The whiskers
extend to the most extreme non-outlier
data points. Notably, the 75th percentiles
in Bam, Kahnnoj, and Shahdad stations
exceed 35, while Baft station recorded less
than 30 . The boxplots also illustrate the
variability of Tmax across stations and years
and the presence of extreme values. Table 1
summarizes the statistical characteristics of
the 41-year annual maximum temperatures
(AMTs) extracted from CRU data for the
selected stations.

- CRUdatasets are produced by the Climatic
Research Unit (CRU) at the University of
East Anglia in the UK. They provide high-

resolution gridded datasets of various
climate variables, such as temperature,
precipitation, and cloud cover for all land
areas at 0.5° resolution. The maximum
temperature data on the monthly scale were
downloaded for the 12 stations in Kerman
Province from 1979 to 2019. These data were
interpolated using the IDW method 3°3%. The
CRU data were then validated against the
observed point-based data from the selected
stations. To evaluate the accuracy of CRU
data sets, the statistical criteria of coefficient
of determination (R?), normalized root mean
square error (NRMSE), and mean bias error
(MBE) have been employed. The results of
these indices confirmed that the accuracy of
the CRU data is reliable (Table 1).

- ERAS gridded datasets: For all selected
stations in this study, the monthly gridded
datasets of soil moisture (m3.m3) were
obtained from ERAS5( https://www.ecmwif.
int/en/forecasts/datasets/reanalysis-
datasets/era5) with a spatial resolution of
0.125° resolution for the period of 1979-2019.
ERAS is the latest global climate reanalysis
produced by ECMWF(European Centre for
Medium-Range Weather Forecasts), covering
atmospheric conditions from January 1950 to
the present. The ERAS is the fifth generation

Tmax

Anar Kerman Baft Bam Jiroft

Kahnooj Hormoz Rafsanjan Shahdad Sharbabak Sirjan

Stations

Figure 2) Boxplots of the Tmax time series for each of the 12 stations in Kerman Province.
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Table 1) Summary statistics and quantiles of the CRU data for the selected stations.

Statistics  Baft Rafsanjan Kerman Sirjan Shahrbabak Zarand Kahnoj Bam Jiroft Shahdad Anar
Num. data 41 41 41 41 41 41 41 41 41 41 41
Mean 3837 37.73 35.53  36.04 35.94 36.83 38.60 3837 3459 3841 37.84
St.deviation  0.82 0.95 0.91 0.84 0.88 0.96 0.76 082 091 0.93 0.93
Skewness  -0.05 -0.03 -0.10 -0.02 -0.03 -0.04 -0.08  -0.05 -0.20 -0.16 -0.15
Kurtosis -0.67 -0.66 -0.60 -0.90 -0.90 -0.49 -0.26  -0.67 -0.78 -0.99 -0.83
10%quantile  37.5 36.4 34.4 34.9 34.7 35.6 37.5 375 333 37.2 36.5
25%quantile  37.7 36.9 34.7 35.2 35.2 36.1 38.1 37.7 34.0 37.7 37.1
50%quantile  38.3 379 35.7 36.1 36.1 37.0 38.6 383 348 38.6 38.0
75%quantile  39.0 38.3 36.2 36.6 36.5 37.5 39.1 39.0 352 39.1 38.4
90%quantile  39.4 389 36.6 37.0 37.0 37.9 39.5 394 357 39.6 39.0

ECMWEF atmospheric global climate reanalysis
produced by the Copernicus Climate Change
Service (C3S) at ECMWF 18233,
Methodology

This study followed a series of steps to
analyze the historical changes in hot extreme
temperatures about time and soil moisture
covariates across the Kerman Province:

1. Data from station-based observations,
CRU, and ERA5 were extracted for all 12
stations in the case study.

2. Nonparametric tests, including Mann-
Kendall, ADF, and Pettit's test, were utilized to
detect trends, stationarity, and homogeneity
of the AMT, respectively.

3. The extreme distribution functions of
S-GEV and NS-GEV were performed using the
MLE method, examining the impact of time
and SM covariates on the behavior of NS-GEV.
4, Frequency analysis was conducted to
calculate the temperature values for different
return periods.

Autocorrelation, homogeneity, trend, and
stationarity tests

This section describes how we used some
nonparametric tests to evaluate the quality
of AMTs. The first step was to apply the
outlier detection test to all AMT time series.
Outliers in the extreme climatological
data set can reveal necessary information

about the population. So, we determined
the threshold value as (Q3 + 3xIQR),
where Q3 is the third quartile, and IQR is
the interquartile range®'l. The time series
randomness was also evaluated using the
autocorrelation function, which measures
the correlation between AMT values at
different time lags to assess the dataset's
time dependence. This study focused on
the first-order autocorrelation coefficient,
indicating the short-term memory of
extremely hot temperatures.

In the following, the Mann-Kendall, ADF,
and Pettit nonparametric tests were
chosen to evaluate trends, stationarity, and
homogeneity of AMTs. This selection is
justified by their robustness, applicability
to non-normally distributed data, and
effectiveness in capturing non-linear
patterns and abrupt changes. These tests
provide valuable insights into extreme
temperature time series' long-term behavior
and characteristics, making them well-
suited for rigorous statistical analysis in this
context [3%37],

Mann-Kendall (MK) test and Sen’s slope
estimator: To detect any potential trends
in the AMTs at a 95% confidence level, we
used the nonparametric Mann-Kendall test
38391 to identify potential trends in the AMTs.



This test effectively assesses changes in the
median of a time series data over time. The
MK test assumes that the null hypothesis
(H,) states the absence of a trend in the
data time series. In contrast, the alternative
hypothesis (H,) suggests the presence of
a trend. The following relationships were
employed:

s =20 Bjaeasgn(Y; — Vi) Eq.(1)

+1 if (,—-Y)>0
0 if (f-¥)=0
-1 if (v,-Y)<0

Sgn(}} — YJ = Eq.(2)

VAR(s) = % [n(n—1)(2n+5)

- gzltp (t, —1)(2t, +5)] Eq.(3)

= if s>0
JVAR(s)

Zn =10 if s=0

,L if s<0
JVAR(s)

Eq. (4)

The test statistic, denoted as Z , is
determined based on the number of data
points (n), the i and j™ observations (Y,
and Yj), the number of clusters with more
than two members (q), and the number of
datain the p™ class (tp). The null hypothesis
(H,) is rejected only if the test statistic
significantly deviates from zero at a 5%
significance level, which occurs when |Z |>
1.96, indicating the presence of a trend in
the time series®.

Sen's slope estimator Y was employed to
ascertain the extent of potential trends in
the AMTs. This method calculates the slope
(indicating the linear rate of change) and the
intercept using the following formula:

B, = Median [Yf._yi: Yj2Yi, i<j=12..0 ] Eq.(5)

Jj=i

Herein, Y, and Y]. are the extreme hot
temperature values for years i and j,

respectively, and n is the number of data.
Stationarity and Homogeneity Tests:
This section employed the Augmented
Dickey-Fuller (ADF) test to examine the
stationarity of AMTs in all 12 selected
stations at a 95% confidence level. The
ADF test's null hypothesis (H ) proposes
that the time series is stationary, while
the alternative hypothesis (H,) suggests
that the time series is not stationary (NS)
(351 For further details on this test, refer
to 3¢, We also utilized Pettitt's test *!! to
examine the homogeneity of the AMTs. This
nonparametric test can identify any changes
in the mean of the AMTs at an unknown
time. It does not rely on any assumptions
about the distribution of the time series.
The H is no change in the distribution of a
random variable sequence; the H, is that the
distribution function F (x) of the random
variables from X, to X is different from the
distribution function F,(x) of the random
variables from X , to X.. More details about
this test can be found in .

Generalized Extreme Value (GEV)

The flexibility of the GEV lies in its ability to
model various extreme behaviors through
the utilization of the three distribution
parameters of (y, o, &) : (1) the location
parameter (u), which represents the
central part of the distribution; (2) the
scale parameter (o), which defines the
magnitude of deviation around the location
parameter; and (3) the shape parameter (§),
which governs the tail behavior of the GEV
distribution 1742,

The GEV distribution unifies the type I
(Gumbel with &=0), type Il (Fréchet with
€>0), and type III (Weibull with &<0) EV
distributions into a single family, offering a
continuous range of shapes. In essence, GEV
is a three-parameter model that combines
Gumbel, Fréchet, and Weibull distributions
into one form %, as represented in Equation
(6 and 7):



fx)=p(X=x)=H&§, o1

z 1/§
z{%f—@—;@—m)) F0 L6
e o t=0
F(x) =1 — = Eq. (7)

The shape parameter ¢ is the Extreme Value
Index (EVI),whichdeterminesthetailbehavior
of the GEV. For the Fréchet distribution
(¢ > 0), the tail displays a power function
decay, showing a heavy tail. Conversely, the
reversed Weibull (¢ < 0) exhibits a tail with
a finite right endpoint, signifying a bounded
tail. In the case of Gumbel (¢ = 0), the tail
decays exponentially, indicating a lighter tail.
Coles 2! proposed the following distribution
function for a nonstationary GEV with time-
dependent parameters:

| =

F@umﬂﬂl®=ﬂm—@+f%@—MM)}

Eq. (8)

The parameter ¢ is commonly assumed
to be constant, as its estimation is highly
uncertain, even in the stationary case, as
noted byl

The Maximum Likelihood Estimation
(MLE) Method

The MLE is a commonly employed method
for fitting conceptual models and estimating
the parameters of a Probability Density
Function (PDF)*Y. To illustrate, let us
consider evaluatingarandom variable X with
the PDF f(x; al,a2,..,am) and parameters
a;, where i =1, 2, ..., m. In MLE, the first step
involves extracting a random sample of data
X1, Xpii3X3, . Xn from this probability
density, whose joint PDF is expressed as:

all] )

a II])

f(Xy,%X2 ,X3 , .. X381 ,89, ..

= [[is f(xi5 a2, ,a3 .. Eq. (9)

Here, the probability of achieving a given
value of X (e.g, X, ) is proportional to
f(x; a;,ay,... ay). Similarly, the probability of
obtainingtherandom sample Xy, Xyi.ir3, X3, ... X,
fromthe population ofXis proportional to the
product of the individual or joint PDFs. This
product is known as the likelihood function,
which can be derived using Equation (10):

L =TT fG 5 23,85 125, e ay) Eq.(10)

Here,a;, 1=1,2,..,m representstheunknown
parameters. By maximizing n random
observations from  f(x;; a;,a,,a3, .. a,,)
, we obtain the likelihood of the sample.
The parameter estimates resulting from this
maximization are called Maximum Likelihood
Estimates (MLEs). Since maximizing the log L
is equivalent to maximizing L concerning the
same values of a;, an alternative representation
of the maximum likelihood formula is as
follows:

LnL=L" =In][iL, f(x;; a;,a; ,a3 , ... ay)

= 2L, f(xy; ay,a5 ,a3 ,... ay) Eq(11)

Numerous nonstationary (NS) EVA software
tools are available for analyzing extreme
hydro-climate data. For instance, the
R-package "ismev" models the NS as a linear
regression function of generic covariates
1 Herein, we utilized the "extRemes"
package that provides EVA capability and
assesses the uncertainties of parameters
(46l Consequently, the NS model parameters
were obtained using the MLE likelihood
method with the "extRemes" package.
Time-varying NS-GEV(TNS-GEV) and NS-
GEV with Soil Moisture Covariate

The NS-GEV distribution has parameters
that depend on covariates, such as time or
other physical drivers like soil moisture
(SM). These covariates reflect the changes
in the characteristics of extreme events over
time or spacel?*7],

To explore the link between AMTs and SM,



we computed the antecedent SM during the
summer (May-June-July) and assessed its
correlation with the AMTs from June to August
(JJA). The NS-GEV distribution with time-
varying parameters is described by Equation
(12), while Equation (13) represents the NS-
GEV equation with SM as a covariate.

Eq. (12)
Eq. (13)

n() = po + pyt
H(SM) = po + 1y SM

where |1, and [, arethe S- and NS-location
parameters, respectively. Finally, to compare
the goodness of the fitted distributions, the
Akaike Information Criterion (AIC) was
employed 81,

Findings

Trend, Homogeneity, and Stationary
Frequency Analysis of AMTs

In this section, the analysis for homogeneity
revealed that all the AMT time series for the
chosen stations exhibited breaks around

1996, roughly in the middle of the time
series (Table 2). The homogeneity of the
AMT time-series declined after this year.
The overall disruption inhomogeneity of
extreme temperatures was interpreted as
an indication of climatic change across the
study area.

The Mann-Kendall test was employed to
check the significance of the trend in AMTs
at the 5% significance level for the selected
stations. The results illustrated that the
computed p-value was smaller than 0.05 for
all 12 stations. [t means we can reject the null
hypothesis(HO) of no trend and accept the
alternative hypothesis(H1) of a significant
trend. Based on the temperature analysis in
the selected stations, it was concluded that
all stations have recorded higher increasing
trends(Figure 3).

Once the trend in the AMTs was confirmed,
the Augmented Dickey-Fuller (ADF) test 13
was applied to assess data stationarity. The
ADF resultsindicated that AMT time series in

Table 2) Statistical test results of homogeneity, trend, and stationarity for 12 selected stations in Kerman
Province(R1: *First-lag autocorrelation, *Trend detected).

Possible .
. . Station Break Trend Sen’s Stationary
Climate Region R1 Homogeneous
Name Kendall's Slope ADF
Year Trend P-Value Stationary
Tau Test
Excessively-Arid Anar < No 1996 * 0.6552 0.000 0.064 No -3.256
Mediterranean Baft & No 1996 e 0.5920 0.000 0.055 No -2.630
Excessively-Arid Bam o No 1996 e 0.6024 0.000 0.056 No -3.197
Arid Kahnooj * No 1996 * 04939 0.000 0.049 No -3.441
Arid Kerman * No 1996 * 0.6115 0.000 0.063 No -2.890
Arid Lalehzar * No 1996 * 0.6016 0.000 0.056 No -2.790
Excessively-Arid M}f‘rrgfh * No 1996  *  0.6370 0.000 0.064 No  -3.089
Excessively-Arid Rafsanjan * No 1996 * 0.6353 0.000 0.067 No -3.152
Arid Shahdad * No 1996 * 0.6197 0.000 0.063 No -3.088
Excessively-Arid  Slabf No 1996  * 06519 0000 0062 No -3.101
Babak
Excessively-Arid Sirjan = No 1996 e 0.6329 0.000 0.060 No -2.975
Arid Zarand  * No 1996 * 0.6304 0.000 0.066 No -3.063
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Figure 3) Time series of Annual Maximum Temperature for some selected stations.

all 12 selected stations were nonstationary
(NS). For example, at the Bam station, the
ADF statistic was -3.197, lower than the
critical value of -3.401. Additionally, the
p-value exceeded the 5% significance level,
concluding that the null hypothesis of the NS
state should be accepted.

Figures 4 and 5 show the results of fitting
the standard S-GEV model to the Kerman
and Bam stations' annual maximum
temperatures (AMTs). The first graph in
these figures is the quantile-quantile (Q-
Q) plot that compares the empirical and
theoretical quantiles of AMTs under the
GEV assumption. The second graph in these
figures is the return level plot that shows
the relationship between the return levels
and return periods of AMTs. These plots
indicate a good agreement between the GEV
model and the AMT data. As shown (Figures 4
and 5), for the 50-year return level, the S-GEV
model resulted in extreme temperatures
equaling 39.86°C and 37.27°C with a 95%
confidence interval of [394640.26] gnd [368337.69]
for Bam and Kerman stations, respectively.
The AIC indices for stationary assumptions
were equal to 105 and 114, respectively.
The results showed that all the mentioned
stations have a nonstationary trend.

This issue was also confirmed by Moghaddasi
et al. ?! for another region of Iran dominated
by an arid climate zone. Aksu (2021)
also approved that over the fifty stations
extracted from seven geographical regions of
Turkey, more than half of the absolute annual
maximum time series (26/50) showed a
nonstationary positive trend (2%

Discussion

The AIC for S-GEV and NS-GEV were equal
to 113.96 and 73.96 at Kerman station,
showing a significant decrease in these
indices, indicating that the NS behavior of
AMT is acceptable. The AIC of other stations
also confirmed this behavior. As an example,
the TNS-GEV for the Kerman station resulted
in Equation (14):

() = 0.063+t+ 35.23 Eq. (14)

In the following, the NS-GEV frequency
analysis of AMT about the SM variable
as a covariate was considered during
the 1979-2019 period. To this end, the
relationship between AMT-JJA and SM-M]]
was investigated for all the selected stations
at the mentioned period. For instance, a
significant negative correlation coefficient



was observed in Kerman station, equal
to 0.81. This negative correlation was
also compatible with Whan et al's 9. For
Southern-Central and Southeastern Europe,
these researchers applied GEV distribution
to investigate the influence of soil
moisture(SM) as the covariate on extreme
temperatures in summer (TX). They
identified a negative relationship between
SM and TX, where a 100 mm decrease in
model-based SM is associated with a 1.6°C
increase in TX in their case study. As shown
(Table 3), the AIC criteria for three S-GEV,
TNS-GEV, and NS-GEN models with SM as a
covariate at the selected stations. Regarding
the NS-GEV with SM-M]] as the covariate,
the AIC was equal to 71.62 for the Kerman
station, but according to Table 3, the AIC
under SM-M]] was mostly bigger than AIC
under TNS-GEV in other stations. In other
words, the SM-M]] as a covariate can be used
only in Kerman station.

As previously noted, we used the NS-GEV

model to analyze the frequency of AMTs from
1979 to 2019 using time and soil moisture
(SM) covariates. SM significantly impacts
water and energy cycles and temperature
extremes by modifying the soil's thermal
properties, surface albedo, precipitation, and
evapotranspiration processes °**!, Therefore,
we utilized SM as a suitable covariate for
the NS-GEV model to investigate future hot
extremes, potential droughts, and time. Our
results demonstrated that the interactions
between AMTs and SM varied across different
climatic zones of Kerman Province. Although
we assumed a linear relationship between
AMTs and SM in this study, this assumption
increases the estimation variance 2, which
can be considered a limitation of this work.

Conclusion

Annual maximum temperature (AMT) affects
heatstroke, energy use, cooling systems,
water demand, and heart health. Climate
change may alter how often it gets very hot in

Table 3) The AIC criteria for three GEV models with SM as a covariate at the selected stations.

Station S-GEV TNS-GEV NS-GEV-SM
Anar 114.659 72.836 106.224
Baft 99.185 59.722 91.377
Bam 105.167 71.348 71.328

Kahnooj 100.431 77.325 94.930

Kerman 113.966 73.959 71.629

Lalehzar 105.162 69.424 98.375

Miandeh Jiroft 112.872 72.168 94.558
Rafsanjan 117.695 76.838 111.256
Shahdad 114.072 74.189 115.238
Shahr Babak 110.685 66.759 89.913
Sirjan 106.869 58.938 96.825
Zarand 118.748 76.383 83.229
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Figure 4) The return level against the return period for Kerman station.
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ayear. In the present study, the stationary(S)
and nonstationary (NS) generalized extreme
value(GEV) distribution functions were fitted
to AMTs derived from 12 weather stations
in Kerman Province during the 1979-2019
period. The required AMTs for this period
were extracted from the CRU gridded data
sets, and the soil moisture (SM) data was
collected from ERAS5. The parameters of
the S-GEV and NS-GEV distributions were
estimated using the MLE method.
Moreover, the akaike information criterion
(AIC) was employed to identify the most
appropriate S- and NS-GEV distribution
functions. Considering the Augmented
Dickey-Fuller (ADF) results, it was concluded
that the AMT time series was NS. This result
was also confirmed by AIC criteria calculated
forboth S-GEV and NS-GEV assumptions. The
time-varying NS-GEV(TNS-GEV) frequency
analyses were carried out for all 12 stations
in Kerman Province. As a result, the NS
behavior of AMTs for the selected stations
was found to be affected by the covariates
of time. Also, a negative correlation was
observed between AMTs and antecedent SM
in the summer season (SM-M]J), which was
above 0.5 for all stations. Furthermore, the
NS-GEV frequency analysis of AMTs with
SM-M]J] as the covariate resulted only in
better AIC values at the Kerman station.
The results of our study on the changing
patterns of extreme hot temperature, the
link between soil moisture and extreme
temperature, and the rising trend of extreme
temperature are consistent with the findings
of previous research by Whan et al. (2015),
Aksu (2021), and Moghaddasi et al. (2022).
The NS-GEV model used SM as a covariate to
assess potential interactions with future hot
extremes in this study. SM, arandom variable
varying in time and space, was assumed to
have a linear relationship with AMTs, which
can increase estimation variance. This
limitation should be recognized in future

studies. Extreme temperature trends also
have multifaceted implications for local
communities, agriculture, and other relevant
sectors. Vulnerable populations, such as the
elderly and those with pre-existing health
conditions, may face heightened health
risks. Furthermore, extreme temperatures
can strain infrastructure, potentially leading
to power outages and increased demand
for cooling systems. Agriculture is also at
risk, as heat stress can impact crop yields
and livestock productivity, with potential
economic and food security implications for
local and global markets.

Given the nonstationary (NS) conditions
of extreme temperatures resulting from
natural and/or human activities, applying
NS frequency analysis for estimating
hydrological variablesacross differentdesign
periods is recommended. Furthermore,
this study emphasizes the importance of
considering soil moisture (SM) as a crucial
factor in predicting future extreme heat
events. It also underscores the necessity
for further investigation into the non-linear
relationship between SM and extreme
temperatures and the role of prior drought
in heightening extreme heat events. These
findings carry significant implications for
climate change adaptation and mitigation
efforts, as well as for developing effective
strategies to manage the impacts of extreme
heat events. Due to the nonstationary
nature of drought propagation in changing
environments, providing precise drought
warnings is challenging. The practical goal
of this research is to mitigate the impact of
drought and climate change.
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