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Aims: Over the past twenty years, Iran has experienced a rise in extreme temperatures, 
particularly in hot events like extreme temperatures, as indicated by recent studies. This 
research seeks to analyze the annual maximum temperatures (AMT) in the dry Province of 
Kerman, Iran, focusing on both stationary (S) and nonstationary (NS) behavior.
Materials & Methods: Trend, homogeneity, and stationarity tests were utilized to identify 
the critical characteristics of the AMTs from 1979 to 2019. Frequency analysis of the AMTs 
was conducted using both stationary Generalized Extreme Value (S-GEV) and nonstationary 
GEV (NS-GEV) models, estimating distribution parameters through a maximum likelihood 
estimator(MLE). In addition to the time-varying NS-GEV (TNS-GEV) investigations, soil 
moisture (SM) was incorporated as a covariate. 
Findings: Results demonstrate that, compared to the S-GEV case, the NS-GEV frequency 
analyses significantly impact the return values of the AMTs, leading to an increase. The NS-
GEV estimations for 50-year return levels were significantly higher than those in the S-GEV. 
The study’s findings revealed that the average Akaike Information Criterion (AIC) for both 
the S-GEV and TNS-GEV estimations decreased from 110 to 71 across all 12 selected stations 
in Kerman Province. The AIC value for the NS-GEV with the soil moisture (SM) covariate was 
approximately 94. Thus, the TNS-GEV frequency analysis of AMTs resulted in improved AIC 
values compared to the NS-GEV with soil moisture as the covariate.
Conclusion: Given the nonstationary (NS) conditions caused by natural and/or human 
activities, it is recommended to utilize NS frequency analysis for estimating hydrologic 
variables across different design periods. It has been noted that NS-GEV frequency analyses 
lead to higher return levels of AMTs than S-GEV analyses.
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Introduction
Extreme weather events have become more 
common and severe due to global climate 
change, impacting human life worldwide. 
Different regions of the world have 
experienced different levels of warming in 
the global surface temperatures. The highest 
temperature values in the global annual 
surface averages have mostly occurred in the 
past 20 years [1]. In these years, Iran has also 
experienced unprecedented extreme hot 
temperatures in various climatic regions. 
The annual maximum temperature (AMT) 
has increased over time, and its extremely 
hot temperature distribution has shown 
nonstationary (NS) behavior[2]. 
Extreme Value Theory (EVT) is a statistical 
theory that deals with extreme events like 
tail events or values lying beyond the range 
of traditional observations. EVT describes 
the distribution of the most extreme values, 
either the highest or the lowest, in a data 
set. EVT has been applied in various fields to 
model and predict extreme events that may 
have severe impacts, such as heat waves, 
heavy rainfall [3,4], droughts[5,8], sea levels [9], 
and floods [10,11]. 
Extreme climate studies can be divided into 
two categories. One category is the extreme 
climate indices, which use fixed or percentile 
thresholds to measure the extremeness of 
climate events. The other category is the 
frequency analysis, which examines the 
distribution of extreme values [2,12]. Two 
standard methods for analyzing extreme 
values (EV) are block maxima (BM) and the 
peaks-over-threshold (POT). These methods 
select the most extreme values from a data set 
based on different criteria. The probability 
distributions that fit these methods are 
the generalized extreme value (GEV) and 
the generalized Pareto distribution (GPD), 
respectively [13,16]. 
The extreme value analysis (EVA) can 
be performed under both stationary (S) 

and nonstationary (NS) assumptions. 
These assumptions reflect whether the 
characteristics of extreme events, such as 
their frequency and intensity, are constant or 
changing over time. In this regard, Maximum 
likelihood estimation (MLE) is a simple 
and widely used method for EVA studies. 
MLE is a statistical technique that finds the 
best-fitting probability distribution and its 
parameters for a given data set based on the 
likelihood function[7,12,17,18]. In addition, the 
trend component for hydroclimate extremes 
under NS conditions can be incorporated into 
the GEV parameters (µ: location, σ: scale, and 
ξ: shape) as a function of time or other hydro-
climate covariates. Soil moisture (SM) and 
near-surface temperature are examples of 
covariates that can be considered to establish 
a link between extreme temperature and 
land-atmosphere interactions [19,24]. 
Some recent studies have investigated 
the issue of nonstationary (NS) extreme 
temperature using the GEV model with 
different covariates. For instance, the NS-
GEV model was used to analyze the extreme 
temperature of north-central India (NCI) 
and evaluated the effect of long-term soil 
moisture changes from 1948 to 2014[22]. 
The return levels of absolute extreme 
temperatures in 50 stations in Turkey were 
also calculated and examined in time, and the 
teleconnection patterns of AO and NAO were 
the possible trend drivers. These studies 
demonstrate the significance and usefulness 
of the NS-GEV model for analyzing and 
forecasting extreme temperature events 
under changing climatic conditions[25]. 
Several studies have observed positive 
trends in Iran's extreme temperatures and 
related indices [26,27]. For example, the EVT 
methods, such as block maxima (BM) and 
peaks-over-threshold (POT), were utilized 
to analyze the NS behavior of maximum 
monthly temperature in the Arak plain of Iran 
from 1901 to 2016 [28]. The return periods of 
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extremely hot temperatures were calculated 
using long-term data from 41 urban areas 
in Iran. The Generalized additive Models for 
Location, Scale, and Shape (GAMLSS) were 
applied to examine how the return period of 
50 and 100 maximum temperatures changed 
over time and space. Results revealed that the 
maximum temperature time series showed 
significant nonstationarity in 83% of urban 
areas in Iran. The return levels of maximum 
temperature increased over time and space, 
indicating a warming trend in Iran[29].
Iran has a complex and variable temperature 
behavior due to its arid and semi-arid 
location, diverse climates, and landscapes. 
This makes it challenging to cope with the 
effects of climate change. However, most of 
the previous studies on extreme temperature 
in Iran have been limited in scope and 
have yet to account for the effect of hydro-
climate variability in the temporal extreme 
temperature distribution. Therefore, this 
study addresses this gap by examining 
the extremely hot temperature in Kerman 
Province, located in southeastern Iran, which 

ranges from dry to humid climates. We apply 
S-GEV and NS-GEV distribution functions with 
time and soil moisture covariates to capture 
the spatiotemporal changes in extremely hot 
temperatures. Finally, we estimate the return 
levels and analyze the regional differences in 
extreme temperature.
Study Area and Datasets
Iran covers an area of 1,648,195 km2 in 
West Asia, and its location is between 24–
40°N latitude and 43–62°E longitude. The 
country has a diverse topography, with an 
average height of 5,137m above sea level. 
Furthermore, the climate varies across 
different regions of Iran. For example, the 
central Provinces like Kerman have very hot 
summers. The average daily temperature in 
July is more than 38°C. Kerman Province, 
the case study of this research, has a diverse 
climate ranging from arid to humid and 
from mountainous to coastal. The location of 
Kerman Province and its 12 selected weather 
stations are shown as follows (Figure 1). 
The datasets of current research are as 
follows: 

Figure 1) Geographic location of selected stations in Kerman Province, Iran [1. Anar, 2. Baft, 3. Bam, 4. Kahnooj, 
5. Kerman, 6. Lalehzar, 7. Miandeh Jiroft, 8. Rafsanjan, 9. Shahdad, 10, Shahr Babak, 11. Sirjan, 12. Zarand ].
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Station-based observations: The monthly 
maximum temperature for 1979 to 2019 
year for the 12 selected stations in Kerman 
Province was obtained from the official 
documents of the Iranian Ministry of 
Energy. These data were used to validate the 
maximum temperature data extracted from 
the CRU datasets. As illustrated (Figure 2), 
the boxplots of the maximum temperature 
(Tmax) time series for each of the 12 stations 
from 1979 to 2019.
As shown (Figure 2), boxplots with the 
median marked by the central line and the 
lower and upper edges represent the 25th and 
75th percentiles, respectively. The whiskers 
extend to the most extreme non-outlier 
data points. Notably, the 75th percentiles 
in Bam, Kahnnoj, and Shahdad stations 
exceed 35, while Baft station recorded less 
than 30 °C. The boxplots also illustrate the 
variability of Tmax across stations and years 
and the presence of extreme values. Table 1 
summarizes the statistical characteristics of 
the 41-year annual maximum temperatures 
(AMTs) extracted from CRU data for the 
selected stations.
-	CRU datasets are produced by the Climatic 
Research Unit (CRU) at the University of 
East Anglia in the UK. They provide high-

resolution gridded datasets of various 
climate variables, such as temperature, 
precipitation, and cloud cover for all land 
areas at 0.5° resolution. The maximum 
temperature data on the monthly scale were 
downloaded for the 12 stations in Kerman 
Province from 1979 to 2019. These data were 
interpolated using the IDW method [30,31]. The 
CRU data were then validated against the 
observed point-based data from the selected 
stations. To evaluate the accuracy of CRU 
data sets, the statistical criteria of coefficient 
of determination (R2), normalized root mean 
square error (NRMSE), and mean bias error 
(MBE) have been employed. The results of 
these indices confirmed that the accuracy of 
the CRU data is reliable (Table 1). 
-	ERA5 gridded datasets: For all selected 
stations in this study, the monthly gridded 
datasets of soil moisture (m3.m-3) were 
obtained from ERA5( https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-
datasets/era5) with a spatial resolution of 
0.125° resolution for the period of 1979–2019. 
ERA5 is the latest global climate reanalysis 
produced by ECMWF(European Centre for 
Medium-Range Weather Forecasts), covering 
atmospheric conditions from January 1950 to 
the present. The ERA5 is the fifth generation 

Figure 2) Boxplots of the Tmax time series for each of the 12 stations in Kerman Province.

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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ECMWF atmospheric global climate reanalysis 
produced by the Copernicus Climate Change 
Service (C3S) at ECMWF  [32,33]. 
Methodology
This study followed a series of steps to 
analyze the historical changes in hot extreme 
temperatures about time and soil moisture 
covariates across the Kerman Province:
1.	 Data from station-based observations, 
CRU, and ERA5 were extracted for all 12 
stations in the case study.
2.	 Nonparametric tests, including Mann-
Kendall, ADF, and Pettit's test, were utilized to 
detect trends, stationarity, and homogeneity 
of the AMT, respectively.
3.	 The extreme distribution functions of 
S-GEV and NS-GEV were performed using the 
MLE method, examining the impact of time 
and SM covariates on the behavior of NS-GEV.
4.	 Frequency analysis was conducted to 
calculate the temperature values for different 
return periods.
Autocorrelation, homogeneity, trend, and 
stationarity tests
This section describes how we used some 
nonparametric tests to evaluate the quality 
of AMTs. The first step was to apply the 
outlier detection test to all AMT time series. 
Outliers in the extreme climatological 
data set can reveal necessary information 

about the population. So, we determined 
the threshold value as (Q3 + 3×IQR), 
where Q3 is the third quartile, and IQR is 
the interquartile range[34]. The time series 
randomness was also evaluated using the 
autocorrelation function, which measures 
the correlation between AMT values at 
different time lags to assess the dataset's 
time dependence. This study focused on 
the first-order autocorrelation coefficient, 
indicating the short-term memory of 
extremely hot temperatures.
In the following, the Mann-Kendall, ADF, 
and Pettit nonparametric tests were 
chosen to evaluate trends, stationarity, and 
homogeneity of AMTs. This selection is 
justified by their robustness, applicability 
to non-normally distributed data, and 
effectiveness in capturing non-linear 
patterns and abrupt changes. These tests 
provide valuable insights into extreme 
temperature time series' long-term behavior 
and characteristics, making them well-
suited for rigorous statistical analysis in this 
context [35,37].
Mann–Kendall (MK) test and Sen’s slope 
estimator: To detect any potential trends 
in the AMTs at a 95% confidence level, we 
used the nonparametric Mann-Kendall test 
[38,39] to identify potential trends in the AMTs. 

Table 1) Summary statistics and quantiles of the CRU data for the selected stations.

Statistics Baft Rafsanjan Kerman Sirjan Shahrbabak Zarand Kahnoj Bam Jiroft Shahdad Anar

Num. data 41 41 41 41 41 41 41 41 41 41 41

Mean 38.37 37.73 35.53 36.04 35.94 36.83 38.60 38.37 34.59 38.41 37.84

St. deviation 0.82 0.95 0.91 0.84 0.88 0.96 0.76 0.82 0.91 0.93 0.93

Skewness -0.05 -0.03 -0.10 -0.02 -0.03 -0.04 -0.08 -0.05 -0.20 -0.16 -0.15

Kurtosis -0.67 -0.66 -0.60 -0.90 -0.90 -0.49 -0.26 -0.67 -0.78 -0.99 -0.83

10%quantile 37.5 36.4 34.4 34.9 34.7 35.6 37.5 37.5 33.3 37.2 36.5

25%quantile 37.7 36.9 34.7 35.2 35.2 36.1 38.1 37.7 34.0 37.7 37.1

50%quantile 38.3 37.9 35.7 36.1 36.1 37.0 38.6 38.3 34.8 38.6 38.0

75%quantile 39.0 38.3 36.2 36.6 36.5 37.5 39.1 39.0 35.2 39.1 38.4

90%quantile 39.4 38.9 36.6 37.0 37.0 37.9 39.5 39.4 35.7 39.6 39.0
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This test effectively assesses changes in the 
median of a time series data over time. The 
MK test assumes that the null hypothesis 
(H0) states the absence of a trend in the 
data time series. In contrast, the alternative 
hypothesis (H1) suggests the presence of 
a trend. The following relationships were 
employed:

The test statistic, denoted as Zm, is 
determined based on the number of data 
points (n), the ith and jth observations (Yi 
and Yj), the number of clusters with more 
than two members (q), and the number of 
data in the pth class (tp). The null hypothesis 
(H0) is rejected only if the test statistic 
significantly deviates from zero at a 5% 
significance level, which occurs when |Zm|> 
1.96, indicating the presence of a trend in 
the time series[39].
Sen's slope estimator [40] was employed to 
ascertain the extent of potential trends in 
the AMTs. This method calculates the slope 
(indicating the linear rate of change) and the 
intercept using the following formula:

   Eq. (5) 

Herein, Yi and Yj are the extreme hot 
temperature values for years i and j, 

respectively, and n is the number of data.
Stationarity and Homogeneity Tests: 
This section employed the Augmented 
Dickey-Fuller (ADF) test to examine the 
stationarity of AMTs in all 12 selected 
stations at a 95% confidence level. The 
ADF test's null hypothesis (H0) proposes 
that the time series is stationary, while 
the alternative hypothesis (H1) suggests 
that the time series is not stationary (NS)
[35]. For further details on this test, refer 
to [36]. We also utilized Pettitt's test [41] to 
examine the homogeneity of the AMTs. This 
nonparametric test can identify any changes 
in the mean of the AMTs at an unknown 
time. It does not rely on any assumptions 
about the distribution of the time series. 
The H0 is no change in the distribution of a 
random variable sequence; the H1 is that the 
distribution function F1(x) of the random 
variables from X1 to Xt is different from the 
distribution function F2(x) of the random 
variables from Xt+1 to Xt. More details about 
this test can be found in [41]. 
Generalized Extreme Value (GEV) 
The flexibility of the GEV lies in its ability to 
model various extreme behaviors through 
the utilization of the three distribution 
parameters of (µ, σ, ξ) : (1) the location 
parameter (μ), which represents the 
central part of the distribution; (2) the 
scale parameter (σ), which defines the 
magnitude of deviation around the location 
parameter; and (3) the shape parameter (ξ), 
which governs the tail behavior of the GEV 
distribution [17,42]. 
The GEV distribution unifies the type I 
(Gumbel with ξ=0), type II (Fréchet with 
ξ>0), and type III (Weibull with ξ<0) EV 
distributions into a single family, offering a 
continuous range of shapes. In essence, GEV 
is a three-parameter model that combines 
Gumbel, Fréchet, and Weibull distributions 
into one form [12], as represented in Equation 
(6 and 7):
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The shape parameter 𝜉 is the Extreme Value 
Index (EVI), which determines the tail behavior 
of the GEV. For the Fréchet distribution 
(𝜉 > 0), the tail displays a power function 
decay, showing a heavy tail. Conversely, the 
reversed Weibull (𝜉 < 0) exhibits a tail with 
a finite right endpoint, signifying a bounded 
tail. In the case of Gumbel (𝜉 = 0), the tail 
decays exponentially, indicating a lighter tail. 
Coles [12] proposed the following distribution 
function for a nonstationary GEV with time-
dependent parameters:

 

Eq. (8) 

The parameter 𝜉 is commonly assumed 
to be constant, as its estimation is highly 
uncertain, even in the stationary case, as 
noted by[43].
The Maximum Likelihood Estimation 
(MLE) Method 
The MLE is a commonly employed method 
for fitting conceptual models and estimating 
the parameters of a Probability Density 
Function (PDF)[44]. To illustrate, let us 
consider evaluating a random variable X with 
the PDF  and parameters 
aᵢ, where i = 1, 2, ..., m. In MLE, the first step 
involves extracting a random sample of data 

 from this probability 
density, whose joint PDF is expressed as:

Here, the probability of achieving a given 
value of X (e.g., X1 ) is proportional to

. Similarly, the probability of 
obtaining the random sample  
from the population of X is proportional to the 
product of the individual or joint PDFs. This 
product is known as the likelihood function, 
which can be derived using Equation (10):

Here, , represents the unknown 
parameters. By maximizing n random 
observations from 
, we obtain the likelihood of the sample. 
The parameter estimates resulting from this 
maximization are called Maximum Likelihood 
Estimates (MLEs). Since maximizing the log 𝐿 
is equivalent to maximizing L concerning the 
same values of aᵢ, an alternative representation 
of the maximum likelihood formula is as 
follows:

Numerous nonstationary (NS) EVA software 
tools are available for analyzing extreme 
hydro-climate data. For instance, the 
R-package "ismev" models the NS as a linear 
regression function of generic covariates 
[45]. Herein, we utilized the "extRemes" 
package that provides EVA capability and 
assesses the uncertainties of parameters 
[46]. Consequently, the NS model parameters 
were obtained using the MLE likelihood 
method with the "extRemes" package.
Time-varying NS-GEV(TNS-GEV) and NS-
GEV with Soil Moisture Covariate
The NS-GEV distribution has parameters 
that depend on covariates, such as time or 
other physical drivers like soil moisture 
(SM). These covariates reflect the changes 
in the characteristics of extreme events over 
time or space[2,47]. 
To explore the link between AMTs and SM, 
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we computed the antecedent SM during the 
summer (May-June-July) and assessed its 
correlation with the AMTs from June to August 
(JJA). The NS-GEV distribution with time-
varying parameters is described by Equation 
(12), while Equation (13) represents the NS-
GEV equation with SM as a covariate.

where  are the S- and NS-location 
parameters, respectively. Finally, to compare 
the goodness of the fitted distributions, the 
Akaike Information Criterion (AIC) was 
employed [48].

Findings
Trend, Homogeneity, and Stationary 
Frequency Analysis of AMTs 
In this section, the analysis for homogeneity 
revealed that all the AMT time series for the 
chosen stations exhibited breaks around 

1996, roughly in the middle of the time 
series (Table 2). The homogeneity of the 
AMT time-series declined after this year. 
The overall disruption inhomogeneity of 
extreme temperatures was interpreted as 
an indication of climatic change across the 
study area.
The Mann–Kendall test was employed to 
check the significance of the trend in AMTs 
at the 5% significance level for the selected 
stations. The results illustrated that the 
computed p-value was smaller than 0.05 for 
all 12 stations. It means we can reject the null 
hypothesis(H0) of no trend and accept the 
alternative hypothesis(H1) of a significant 
trend. Based on the temperature analysis in 
the selected stations, it was concluded that 
all stations have recorded higher increasing 
trends(Figure 3).
Once the trend in the AMTs was confirmed, 
the Augmented Dickey–Fuller (ADF) test [35] 
was applied to assess data stationarity. The 
ADF results indicated that AMT time series in 

Table 2) Statistical test results of homogeneity, trend, and stationarity for 12 selected stations in Kerman 
Province(R1: *First-lag autocorrelation, *Trend detected).

Climate Region Station 
Name R1 Homogeneous

Possible 
Break Trend Sen’s 

Slope 

Stationary

Year Trend Kendall's 
Tau P-Value Stationary ADF 

Test 
Excessively-Arid Anar * No 1996 * 0.6552 0.000 0.064 No -3.256

Mediterranean Baft * No 1996 * 0.5920 0.000 0.055 No -2.630

Excessively-Arid Bam * No 1996 * 0.6024 0.000 0.056 No -3.197

Arid Kahnooj * No 1996 * 0.4939 0.000 0.049 No -3.441

Arid Kerman * No 1996 * 0.6115 0.000 0.063 No -2.890

Arid Lalehzar * No 1996 * 0.6016 0.000 0.056 No -2.790

Excessively-Arid  Miandeh
Jiroft * No 1996 * 0.6370 0.000 0.064 No -3.089

Excessively-Arid Rafsanjan * No 1996 * 0.6353 0.000 0.067 No -3.152

Arid Shahdad * No 1996 * 0.6197 0.000 0.063 No -3.088

Excessively-Arid  Shahr
Babak * No 1996 * 0.6519 0.000 0.062 No -3.101

Excessively-Arid Sirjan * No 1996 * 0.6329 0.000 0.060 No -2.975

Arid Zarand * No 1996 * 0.6304 0.000 0.066 No -3.063



Anvari S. & Moghaddasi M.

ECOPERSIA                                                    	                                                          Fall 2023, Volume 11, Issue 4

283

all 12 selected stations were nonstationary 
(NS). For example, at the Bam station, the 
ADF statistic was -3.197, lower than the 
critical value of -3.401. Additionally, the 
p-value exceeded the 5% significance level, 
concluding that the null hypothesis of the NS 
state should be accepted.
Figures 4 and 5 show the results of fitting 
the standard S-GEV model to the Kerman 
and Bam stations' annual maximum 
temperatures (AMTs). The first graph in 
these figures is the quantile-quantile (Q-
Q) plot that compares the empirical and 
theoretical quantiles of AMTs under the 
GEV assumption. The second graph in these 
figures is the return level plot that shows 
the relationship between the return levels 
and return periods of AMTs. These plots 
indicate a good agreement between the GEV 
model and the AMT data. As shown (Figures 4 
and 5), for the 50-year return level, the S-GEV 
model resulted in extreme temperatures 
equaling 39.86oC and 37.27oC with a 95% 
confidence interval of [39,46,40,26] and [36,83,37,69], 
for Bam and Kerman stations, respectively. 
The AIC indices for stationary assumptions 
were equal to 105 and 114, respectively. 
The results showed that all the mentioned 
stations have a nonstationary trend. 

This issue was also confirmed by Moghaddasi 
et al. [28] for another region of Iran dominated 
by an arid climate zone. Aksu (2021)
also approved that over the fifty stations 
extracted from seven geographical regions of 
Turkey, more than half of the absolute annual 
maximum time series (26/50) showed a 
nonstationary positive trend [25].

Discussion
The AIC for S-GEV and NS-GEV were equal 
to 113.96 and 73.96 at Kerman station, 
showing a significant decrease in these 
indices, indicating that the NS behavior of 
AMT is acceptable. The AIC of other stations 
also confirmed this behavior. As an example, 
the TNS-GEV for the Kerman station resulted 
in Equation (14): 

	         Eq. (14)

In the following, the NS-GEV frequency 
analysis of AMT about the SM variable 
as a covariate was considered during 
the 1979–2019 period. To this end, the 
relationship between AMT-JJA and SM-MJJ 
was investigated for all the selected stations 
at the mentioned period. For instance, a 
significant negative correlation coefficient 

Figure 3) Time series of Annual Maximum Temperature for some selected stations.
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was observed in Kerman station, equal 
to 0.81. This negative correlation was 
also compatible with Whan et al.'s [49]. For 
Southern-Central and Southeastern Europe, 
these researchers applied GEV distribution 
to investigate the influence of soil 
moisture(SM) as the covariate on extreme 
temperatures in summer (TXx). They 
identified a negative relationship between 
SM and TXx, where a 100 mm decrease in 
model-based SM is associated with a 1.6oC 
increase in TXx in their case study. As shown 
(Table 3), the AIC criteria for three S-GEV, 
TNS-GEV, and NS-GEN models with SM as a 
covariate at the selected stations. Regarding 
the NS-GEV with SM-MJJ as the covariate, 
the AIC was equal to 71.62 for the Kerman 
station, but according to Table 3, the AIC 
under SM-MJJ was mostly bigger than AIC 
under TNS-GEV in other stations. In other 
words, the SM-MJJ as a covariate can be used 
only in Kerman station. 
As previously noted, we used the NS-GEV 

model to analyze the frequency of AMTs from 
1979 to 2019 using time and soil moisture 
(SM) covariates. SM significantly impacts 
water and energy cycles and temperature 
extremes by modifying the soil's thermal 
properties, surface albedo, precipitation, and 
evapotranspiration processes [50,51]. Therefore, 
we utilized SM as a suitable covariate for 
the NS-GEV model to investigate future hot 
extremes, potential droughts, and time. Our 
results demonstrated that the interactions 
between AMTs and SM varied across different 
climatic zones of Kerman Province. Although 
we assumed a linear relationship between 
AMTs and SM in this study, this assumption 
increases the estimation variance [52], which 
can be considered a limitation of this work.

Conclusion
Annual maximum temperature (AMT) affects 
heatstroke, energy use, cooling systems, 
water demand, and heart health. Climate 
change may alter how often it gets very hot in 

Table 3) The AIC criteria for three GEV models with SM as a covariate at the selected stations.

Station S-GEV TNS-GEV NS-GEV-SM

Anar 114.659 72.836 106.224

Baft 99.185 59.722 91.377

Bam 105.167 71.348 71.328

Kahnooj 100.431 77.325 94.930

Kerman 113.966 73.959 71.629

Lalehzar 105.162 69.424  98.375 

Miandeh Jiroft 112.872 72.168 94.558

Rafsanjan 117.695 76.838 111.256

Shahdad 114.072 74.189 115.238

Shahr Babak 110.685 66.759 89.913

Sirjan 106.869 58.938 96.825

Zarand 118.748 76.383 83.229
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Figure 4) The return level against the return period for Kerman station.

Figure 5) The return level against the return period for Bam station.
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a year. In the present study, the stationary(S) 
and nonstationary (NS) generalized extreme 
value(GEV) distribution functions were fitted 
to AMTs derived from 12 weather stations 
in Kerman Province during the 1979–2019 
period. The required AMTs for this period 
were extracted from the CRU gridded data 
sets, and the soil moisture (SM) data was 
collected from ERA5. The parameters of 
the S-GEV and NS-GEV distributions were 
estimated using the MLE method.
Moreover, the akaike information criterion 
(AIC) was employed to identify the most 
appropriate S- and NS-GEV distribution 
functions. Considering the Augmented 
Dickey-Fuller (ADF) results, it was concluded 
that the AMT time series was NS. This result 
was also confirmed by AIC criteria calculated 
for both S-GEV and NS-GEV assumptions. The 
time-varying NS-GEV(TNS-GEV) frequency 
analyses were carried out for all 12 stations 
in Kerman Province. As a result, the NS 
behavior of AMTs for the selected stations 
was found to be affected by the covariates 
of time. Also, a negative correlation was 
observed between AMTs and antecedent SM 
in the summer season (SM-MJJ), which was 
above 0.5 for all stations. Furthermore, the 
NS-GEV frequency analysis of AMTs with 
SM-MJJ as the covariate resulted only in 
better AIC values at the Kerman station. 
The results of our study on the changing 
patterns of extreme hot temperature, the 
link between soil moisture and extreme 
temperature, and the rising trend of extreme 
temperature are consistent with the findings 
of previous research by Whan et al. (2015), 
Aksu (2021), and Moghaddasi et al. (2022).
The NS-GEV model used SM as a covariate to 
assess potential interactions with future hot 
extremes in this study. SM, a random variable 
varying in time and space, was assumed to 
have a linear relationship with AMTs, which 
can increase estimation variance. This 
limitation should be recognized in future 

studies. Extreme temperature trends also 
have multifaceted implications for local 
communities, agriculture, and other relevant 
sectors. Vulnerable populations, such as the 
elderly and those with pre-existing health 
conditions, may face heightened health 
risks. Furthermore, extreme temperatures 
can strain infrastructure, potentially leading 
to power outages and increased demand 
for cooling systems. Agriculture is also at 
risk, as heat stress can impact crop yields 
and livestock productivity, with potential 
economic and food security implications for 
local and global markets.
Given the nonstationary (NS) conditions 
of extreme temperatures resulting from 
natural and/or human activities, applying 
NS frequency analysis for estimating 
hydrological variables across different design 
periods is recommended. Furthermore, 
this study emphasizes the importance of 
considering soil moisture (SM) as a crucial 
factor in predicting future extreme heat 
events. It also underscores the necessity 
for further investigation into the non-linear 
relationship between SM and extreme 
temperatures and the role of prior drought 
in heightening extreme heat events. These 
findings carry significant implications for 
climate change adaptation and mitigation 
efforts, as well as for developing effective 
strategies to manage the impacts of extreme 
heat events. Due to the nonstationary 
nature of drought propagation in changing 
environments, providing precise drought 
warnings is challenging. The practical goal 
of this research is to mitigate the impact of 
drought and climate change. 
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