1- Pardeshi S.D., Autade S.E., Pardeshi S.S. Landslide hazard assessment: recent trends and techniques. SpringerPlus 2, 523. 2013; https://doi.org/10.1186/2193-1801-2-523.
2- Kouli M., Loupasakis C., Soupios P., Rozos D., Vallianatos F. Comparing multi-criteria methods for landslide susceptibility mapping in Chania Prefecture, Crete Island, Greece. Nat Hazard Earth Sys. 2013; 1:73–109. https://doi.org/10.5194/nhessd-1-73-2013.
3- Zhiwang W. GIS-based methods for fractal analysis and hazard estimation of regional landslides (Doctoral dissertation), China University of Geosciences. 2010; p92. http://ckyyb.crsri.cn/EN/10.3969/j.issn.1001-5485.2014.01.0052014,31(01):23-28.
4- Hansen A. Landslide hazard analysis. In: Brunsden D, Prior DB, eds., Slope instability. John Wiley and Sons, New York. 1984; pp 523–602.
5- Hansen A., Franks C.A.M. Characterization and mapping of earthquake triggered landslides for seismic zonation. Proceedings of the 4th International Conference on Seismic Zonation, Stanford, California, August 26–29, 1991; pp 149–95.
6- Mandelbrot B.B. The fractal geometry of nature. W. H. Freeman, San Francisco. 1983.
7- Mandelbrot, B.B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science. 1967; 165, 636-638. https://doi.org/10.1126/science.156.3775.636.
8- Family F., Vicsek T. Dynamics of fractal surfaces. World Scientific, Singapore. 1991. https://doi.org/10.1142/1452.
9- Turcotte D.L. Fractals and chaos in geology and geophysics, Cambridge University Press, Cambridge. 1997; p 398. https://doi.org/10.1017/CBO9781139174695.
10- Afzal P., Dadashzadeh Ahari H., Rashidnejad Omran N., Aliyari F. Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geol Rev. 2013; 55:125–133. https://doi.org/10.1016/j.oregeorev.2013.05.005
11- Turcotte D.L. A fractal approach to the relationship between ore grade and tonnage. Econ Geol. 1986; 18:1525–1532. https://doi.org/10.2113/gsecongeo.81.6.1528
12- Agterberg F.P., Cheng Q., Wright D.F. Fractal modeling of mineral deposits. In: Elbrond J., Tang X. (Eds.), 24th APCOM Symposium Proceeding, Montreal, Canada, 1993; pp 43–53.
13- Cheng Q., Agterberg F.P., Ballantyne S.B. The separation of geochemical anomalies from background by fractal methods. J Geochem Explor. 1994; 51:109–130. https://doi.org/10.1016/0375-6742(94)90013-2.
14- Sim B.L., Agterberg F.P., Beaudry C. Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Comput Geosci. 1999; 25:1023–1041. https://doi.org/10.1016/S0098-3004(99)00064-3.
15- Li C., Ma T., Shi J. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor. 2003; 77:167–175. https://doi.org/10.1016/S0375-6742(02)00276-5.
16- Carranza E.J.M. Geochemical anomaly and mineral prospectively mapping in GIS. Handbook of Exploration and Environmental Geochemistry, vol. 11. Elsevier, Amsterdam. 2008; p 351. https://www.elsevier.com/books/geochemical-anomaly-and-mineral-prospectivity-mapping-in-gis/carranza/978-0-444-51325-0.
17- Wang Q.F., Deng J., Wan L., Zhao J., Gong Q.J., Yang L.Q., Zhou L., Zhang Z.J. Multifractal analysis of the element distribution in skarn-type deposits in Shizishan Orefield in Tongling area, Anhui province, China. Acta Geol Sin Engl. 2008; 82:896–905. https://doi.org/10.1111/j.1755-6724.2008.tb00644.x.
18- Zuo R., Cheng Q., Xia Q. Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor. 2009; 102:37–43. https://doi.org/10.1016/j.gexplo.2008.11.020.
19- Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B., Fadakar Alghalandis Y. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor. 2010; 104:34–46. https://doi.org/10.1016/j.gexplo.2009.11.003.
20- Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor. 2011; 108:220–232. https://doi.org/10.1016/j.gexplo.2011.03.005.
21- Afzal P., Fadakar Alghalandis A., Moarefvand P., Rashidnejad Omran N., Asadi Haroni, H. Application of power–spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor. 2012; 112:131–138. https://doi.org/10.1016/j.gexplo.2011.08.002.
22- Afzal P., Alhoseini S.H., Tokhmechi B., Kaveh Ahangaran D., Yasrebi A.B., Madani N., Wetherelt A. Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. Int J Coal Geol. 2014; 127:88–99. https://doi.org/10.1016/j.coal.2014.03.003.
23- Malamud B.D., Turcotte D.L. The applicability of power-law frequency statistics to floods. J Hydrol. 2006; 322(1–4):168–180. https://doi.org/10.1016/j.jhydrol.2005.02.032.
24- Kubota T. A study of fractal dimension of landslides. Journal of Japan Landslide Society. 1994; 31-3, 9-15. https://doi.org/10.3313/jls1964.31.3_9.
25- Omura H., Hicks L.D. Fractal dimension analysis on shallow landslide and channel net system in small watershed, In Ochiai, R., ed. Proceeding of the international symposium on forest hydrology. Tokyo (IUFRO). 1994; pp 407-414.
26- Omura H. Fractal dimension analysis on spatial distribution of shallow landslides triggered by heavy rainfall. In: Proceeding of the XX IUFRO World Congress, Technical Session on Natural Disasters in Mountainous Areas. 1995; pp 97–104.
27- Tarutani N., Majtan S., Morita K., Omura H. Spatial distribution pattern of rapid shallow landslides in Amakus Island. Internationales Symposion, Villach/Osterreich, Tagunqs publikation, Band 1, Seite. 2002; pp 317–323.
28- Majta´n S., Omura H., Morita K. Fractal dimension as an indicator of probability for landslides in north Matsuura, Japan. Geografický časopis. 2002; 54(1):5–19. https://www.sav.sk/journals/uploads/05131128Majtan%20et%20al..pdf.
29- Yang Z.Y., Lee Y.H. The fractal characteristics of landslides induced by earthquakes and rainfall in central Taiwan. In: 10th IAEG International Congress, Nottingham. 2006; paper No. 48.
30- Kubota T., Omura H., Shrestha H.R. The fractal dimension of landslide group and its application to the mitigation of landslide disasters with mapping of legal restriction areas. Geophysical Research Abstracts. 2005; 7, 02170, SRef-ID: 1607-7962/gra/EGU05-A-02170.
31- Carranza E.J.M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev. 2009; 35:383–400. https://doi.org/10.1016/j.oregeorev.2009.01.001.
32- Li Ch., Ma T., Sun L., Li W., Zheng A. Application and verification of a fractal approach to landslide susceptibility mapping. Nat Hazards. 2012; https://doi.org/10.1007/s11069-011-9804-x.
33- Daneshvar Saein L., Rasa I., Rashidnejad Omran N., Moarefvand P., Afzal P. Application of concentration–volume fractal method in induced polarization and resistivity data interpretation for Cu–Mo porphyry deposits exploration, case study: Nowchun Cu–Mo deposit, SE Iran. Nonlinear Proc Geoph. 2012; 19:431–438. www.nonlin-processes-geophys.net/19/431/2012/.
34- Daneshvar Saein L., Rasa I., Rashidnejad Omran N., Moarefvand P., Afzal P., Sadeghi B. Application of Number-Size (N-S) fractal model to quantify of the vertical distributions of Cu and Mo in Nowchun porphyry deposit (Kerman, SE Iran). Arch. Min. Sci. 2013; 58(1): 89–105. doi: 10.2478/amsc-2013-0006.
35- Carranza E.J.M., Sadeghi M. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev. 2010; 38:219–241. https://doi.org/10.1016/j.oregeorev.2010.02.003.
36- Cheng Q. Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor. 1999; 65(3):175–194. https://doi.org/10.1016/S0375-6742(99)00028-X.
37- Goncalves M.A. Characterization of geochemical distributions using multifractal models. Math Geol. 2001; 33(1):41–61. https://doi.org/10.1023/A:1007510209836.
38- Yasrebi A.B., Wetherelt A., Foster P., Coggan J., Afzal P., Agterberg F., Kaveh Ahangaran D. Application of a density–volume fractal model for rock characterisation of the Kahang porphyry deposit. Int J Rock Mech Min. 2014; 66:188–193. https://doi.org/10.1016/j.ijrmms.2013.12.022.
39- Takayasu H. Fractals in the physical sciences. Manchester University Press. 1990; p 176.
40- Ortega O.J., Marrett R., Laubach S.E. A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bull. 2006; 90, 2:193—208. https://doi.org/10.1306/08250505059.
41- Hassanpour Sh., Afzal P. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci. 2013; 6:957–970. https://doi.org/10.1007/s12517-011-0396-2.
42- Monecke T., Monecke J., Herzi P.M., Gemmell J.B., Monch W. Truncated fractal frequency distribution of element abundance data: A dynamic model for the metasomatic enrichment of base and precious metals. Earth Planet Sc Lett. 2005; 232:363-378. https://doi.org/10.1016/j.epsl.2005.01.033.
43- Hadian Amri M., Solaimani K., Kavian A., Afzal P., Glade T. Curve estimation modeling between area and volume of landslides in Tajan River Basin, north of Iran. ECOPERSIA. 2014. 2 (3):651-665. http://ecopersia.modares.ac.ir/article-24-12400-en.html.
44- Geology Survey of Iran (GSI). 1997; http://www.gsi.ir/Main/Lang_en/index.html.
45- Guzzetti F., Ardizzone F., Cardinali M., Rossi M., Valigi D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sc Lett. 2009; 279: 222–229. https://doi.org/10.1016/j.epsl.2009.01.005.
46- Hadian Amri M. Landslides Susceptibility Modeling in a part of Tajan River Basin Using Fractal Geometry and GIS Based Methods (Doctoral dissertation). University of Mazandaran (UMZ), Babolsar, Iran. 2014; (In Persian). https://www.umz.ac.ir/.
47- Kelarestaghi A., Ahmadi H. Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran, Arab J Geosci. 2009. 2:95-101. https://doi.org/10.1007/s12517-008-0022-0.
48- Varnes D.J. Slope movement types and processes. In: Schuster R.L. and Krizek R.J. eds., Landslides-analysis and control. National Academy of Sciences, Transportation Research Board, Special Report. 1978; 176, 11–33. http://worldcat.org/issn/0360859X
49- Simonett D.S. Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. In: Jennings, J.N., Mabbutt, J.A. (Eds.), Landform Studies from Australia and New Guinea. Cambridge University Press, Cambridge. 1967; 64-84.
50- Rice R.M., Corbett E.S., Bailey R.G. Soil slips related to vegetation, topography, and soil in Southern California. Water Resour Res. 1969; 5 (3): 647-659. https://doi.org/10.1029/WR005i003p00647.
51- Innes J.N. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surf Proc Land. 1983; 8: 579-588. https://doi.org/10.1002/esp.3290080609.
52- Guthrie R.H., Evans S.G. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Proc Land. 2004; 29: 1321-1339. https://doi.org/10.1002/esp.1095.
53- Korup O. Distribution of landslides in southwest New Zealand. Landslides. 2005; 2: 43-51. https://doi.org/10.1007/s10346-004-0042-0.
54- ten Brink U.S., Geist E.L., Andrews B.D. Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett. 2006; 3: L11307. https://doi.org/10.1029/2006GL026125.
55- Imaizumi F., Sidle R.C. Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan. J Geophys Res. 2007; 17 P. 112 (F03012). doi:10.1029/2006JF000495.
56- Guzzetti F., Ardizzone F., Cardinali M., Galli M., Reichenbach P., Rossi M. Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology. 2008. 96: 105-122. https://doi.org/10.1016/j.geomorph.2007.07.015.
57- Imaizumi F., Sidle R.C., Kamei R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf Proc Land. 2008; 33: 827-840. https://doi.org/10.1002/esp.1574.