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Aims: Landslide classification using a fractal model at the Tajan river basin in northern Iran 
is the study intended as a new approach based on 142 landslide information data sets.
Materials & Methods: The obtained results were interpreted using the Depth–Number (Dp–
N) fractal model and a relatively broad set of information available for each landslide class, 
consisting of the Digital Elevation Model (DEM), rainfall, land-use, geology (lithology and 
fault) and drainage network data.
Findings: The log–log plot shows five classes for depth (weakly, moderately, highly, strong-
ly, and extremely magnitude) which shows that the extremely magnitude landslides have 
depths higher than 19.95 m in the NE, middle, western, and SE parts of the Tajan basin. The 
strong (5-19.95 m) and high (2.4-5 m) magnitude landslides happened in the northern, NE, 
western, and NW parts. The results, which were matched up to land-use, drainage network, 
DEM, and fault allocation patterns, revealed an affirmative correlation between landslide 
classes and the particulars in the area. In addition, the coefficient of determination, R2, for 
each population shows that the classification has been done correctly using the Dp-N fractal 
model. Amounts of P-value obtained from paired samples t-test and ANOVA showed that the 
separate categories are incongruous and significantly different (sig=0.000).
Conclusion: Results show that separating the populations of landslides based on a param-
eter as magnitude and the difference between the populations’ magnitude of landslides 
should be considered in landslide susceptibility zonation.
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Introduction
Landslides as a geomorphological hazard 
that causes significant environmental dam-
ages [1] are the second most numerous global 
natural catastrophic event [2]. This phenom-
enon is a complicated process with nonlin-
ear inter-reaction [3]. Recognition of unsta-
ble hillside zones is one of the main aims of 
the landslide study. Customized geological 
methods for appreciation in landslide sus-
ceptibility mapping are usually based on 
using qualitative (direct) or quantitative 
(indirect) techniques [4, 5]. Recently fractal/
multifractal modeling has become a proper 
method for studying landslides. 
Fractal geometry [6] obtained by the study of 
self-similarity of natural features and an er-
ratically shaped body, e.g., a coastline [7] or 
several other natural forms [8, 9] is the main 
branch of nonlinear mathematics [10]. 
Fractal/multifractal modeling has been ex-
tensively used in the different branches of 
environmental sciences [e.g., 10,22]. Many 
natural hazards, e.g., earthquakes, volcanic 
eruptions, floods, asteroid impacts, gullies, 
and landslides, convince fractal frequen-
cy-size statistics to a reasonable estimate for 
intermediate and large events [23]. In recent 
years, the qualitative distribution of land-
slides was calculated based on fractal/mul-
tifractal modeling [24,28].
The basic fractal equation has the following 
form: 

N(R) = C/RD	 Eq. (1)

Where N(R) is the number of items with lin-
ear dimension R, C is a constant, and D, the 
power of the exponential function, defines 
the fractal dimension.
Fractal dimension as the index of likeness, 
density, complexity, and frequency helps an-
alyze susceptibility evaluation and distribu-
tion patterns and can also be used as a com-
parative factor. It is a good index to charac-

terize landslides' size, number, and location 
[29, 30].
The object of this article is to propose and 
use the Depth-Number (Dp-N) fractal model 
with its relation to influential factors as the 
foundation for assessing landslide suscepti-
bility.
Various geological explanations could be 
accessible for defining borders of different 
zones in landslides, which may also lead to 
different consequences if the physical char-
acter distribution is not considered. Euclidi-
an geometry recognized geometrical shapes 
with an integer dimension, say 1D, 2D, and 
3D. Though, there are a lot of other forms or 
spatial items, whose dimensions cannot be 
mathematically explained by integers but 
by actual numbers or fractions. These spa-
tial objects are called fractals which describe 
complexity in data distribution by calculat-
ing their fractal dimensions. Different land-
slides can be explained based on distinctions 
in fractal dimensions achieved by analysis 
of related physical data especially the area 
and volume of the landslides. Fractal/mul-
tifractal modeling also demonstrates rela-
tionships between geological, hydrological, 
and geomorphological settings with spatial 
information derived from the analysis of col-
lected data [31,34]. However, good knowledge 
of environmental controls is essential in cat-
egorizing hydrological and geomorphologi-
cal populations based on fractal modeling [35, 

38, 22]. Fractals are explained by a scaling rule 
relating to the item being measured and the 
scale factor. This scaling relationship is clari-
fied by a power law function, which explains 
the essential physical adjectives of the object 
being analyzed [39, 40]. The exponent of the 
power law function refers to the fractal di-
mensions which correspond to variations 
in physical adjectives such as lithology, soil 
type, rainfall, and structural feature [3, 32, 20, 10].
Different log-log plots in fractal models are 
appropriate instruments for the division of 
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environmental zones and classifying pop-
ulations in geomorphological data, such as 
landslides, because threshold values can be 
known and assessed are shown as dividing 
points in those plots. These threshold values 
identified through fractal analysis are usual-
ly correlated with explainable field observa-
tion features or processes.
Mandelbrot (1983) proposed the Number–
Size (N–S) fractal model, which is used to 
separation of the different geological zones 
and features such as islands, earthquakes, 
and trees. Based on the model several frac-
tal modeling were proposed such as the 
concentration-number (C-N) fractal mod-
el for the separation of anomalies from the 
background [41]. This paper proposes the 

Depth-number (Dp-N) fractal model to clas-
sify landslides. 
Most studies on landslide zonation have just 
been based on its area without considering 
the depth or volume. The principal purpose 
of this research is to present detailed fractal 
geometric characteristics of 142 landslides 
inventory of Tajan Watershed, northern Iran 
by investigating the occurring conditions 
and inducing factors according to their spa-
tial distribution at the basin scale and assess 
the fractal relationship between their depth 
and number as geometric characteristics to 
the landslides clustering and delineation; a 
new approach to landslide assessment and 
zonation worldwide which has not been 
used yet.

Figure 1) The green area on the Iran map is Mazandaran Province and the red polygon on the province map 
shows the area locality.
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Materials & Methods
Study Area
Mazandaran Province is one of the rainiest 
regions in northern Iran. This province is 
repeatedly hit by drastic rains yearly, which 
generally trigger massive numeral land-
slides due to conditions resulting in severe 
casualties and economic losses. The area is 
in the Mazandaran province, between UTM 
Coordinate 680119.37E and 725053.78E, 
and 3986371.74N and 4041448.00N, cover-
ing approximately 1,300 km2 (Figure 1).
These landslides are 151 mass movements de-
tected in the area during the local field inves-
tigations and using the Google Earth satellite 
images; then, according to the material and the 
movement types, 142 failures have been select-
ed as landslides with rotational and translation-
al movement types, and the material of earth. 
These landslides were mapped at a 1:25,000 
scale. The largest and smallest landslides area 
is 90 ha and 180 m2, respectively (Figure 2). 

Figure 2) Spatial distribution of landslides in the 
study area.

The area's elevation varies from 87 to 3,011 
AMSL (m) and the slope range is from 0 to 
the extent of 71 degrees. The annual max-
imum daily rainfall range is 64 to 150 mm 
according to the data set of 7 rain stations 
inside and 20 gauges outside of the area us-
ing the Log Pearson type III distribution [43] 
and kriging method (Figure 3).

Figure 3) Location of the rain gauge stations used for 
estimating annual maximum daily rainfall (mm).

42.96% of the lithology of the area is M2,3
m,s,l 

group including marl, limy sandstone and 
siltstone, silty marl, sandy limestone, mud-
stone, and minor conglomerate and 15.96% 
of the area is covered by K2

l,m group includ-
ing cream-light green-grey glauconitic marly 
limestone, limy marl, silty marl, and marl; 
the total length of major faults in the area is 
58.17 m [44]. High and medium-density for-
ests, mixed forest/orchards, and covers cov-
er nearly 73% of the area. 
This research was carried out to investigate the 
fractal model of depth-number as geometric 
factors of the landslide occurrence in Mazan-
daran province, northern Iran. The steps of the 
methodology used in this study are:
1- Extensive field surveys were accomplished 
to collect data on landslide points, recording 
the location and measuring the mean depth 
of existing landslide distribution.
2- Based on decreasing the measured values 
of depths, the cumulative numbers were cal-
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culated for them.
3. The landslides classification have been 
investigated and classified by carrying out a 
Dp-N fractal/multifractal analysis to under-
stand dangerous landslides based on their 
depth (related to area and volume), which is 
the primary parameter for determination of 
landslides' magnitude [45]. 
The general form of the model is

N(≥ρ) ∝ ρ-D	 Eq. (2)

It also can be rewritten as the following form 
based on Zuo et al. (2009), 

log[N(≥ρ)] = – D log(ρ)	 Eq. (3)

where N(≥ρ) points to the number of land-
slides with a depth more significant than the 
ρ value which is the depth of landslides and 
D is the fractal dimension. The target data 
has not undergone pre-treatment and eval-
uation in the fractal model [42, 18, 41].
After sorting the measured depths in all 
landslides based on decreasing values and 
calculating the cumulative numbers for 
them, finally, the Dp-N log-log plot was gen-
erated for depth.
4. Dependence between the variables was 
established by the Pearson correlation coef-
ficient (R) at the 0.05 level (Equation 4).

( )( )
( ) ( )

1

2 2

1 1

n
i ii

n n
i ii i

X X Y Y
R

X X Y Y

=

= =

− −
=

− −

∑

∑ ∑
	 Eq. (4)

Where Xi, Yi, X Y and n are each observed 
data, estimated data equivalent to that of 
observed one, mean of total observed data, 
mean of total estimated data, and the num-
ber of data, respectively.
In that case, the coefficient of determination, 
R2, for each population has been calculated 
to show whether or not the fractal classifi-
cation has been done correctly. The values 

in different categories were also compared 
using paired and ANOVA tests.
5. To validate the results obtained by the 
fractal modeling, also, a total of 6 param-
eters which are the influential factors on 
landslide occurrence in the area, were con-
sidered as the input parameters consist-
ing of the Digital Elevation Model (DEM), 
annual maximum daily rainfall, land-use 
(e.g., road, village), lithology, fault, drainage 
network which have been prepared by Arc-
GIS 9.3.1; these parameters are influential 
factors on landslide occurrence in Mazan-
daran province [46, 47]. The quantitative pa-
rameters have been classified in the GIS en-
vironment.

Findings
Statistical depth parameters of the landslides 
in the area have been shown in Table 1.

Table 1) Statistical parameters of landslide size in 
the area.

Statistical parameter Depth (m)

Number 142

Mean 5.53

Std. Error of Mean 0.44

Std. Deviation 5.26

Skewness 2.74

Std. Error of Skewness 0.2

Kurtosis 9.5

Std. Error of Kurtosis 0.4

Minimum 0.6

Maximum 35

Sum 785.1

Figure 4 and Figure 5 show the Dp-N log-
log plot generated for depth. Breakpoints 
between straight-line segments in the plot 
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illustrate threshold values for separating 
various populations of depth values repre-
senting landslide differences due to different 
geomorphological processes. Based on the 
fractal modeling, five populations for depth 
have been obtained, as depicted in Figure 5.

Figure 4) Log-log plot of Dp-N fractal model of the 
total landslides vs. depth.

Figure 5) Log-log plot of Dp-N fractal model of the 
clustered populations of the landslides vs. depth.

A comparison of the presented models in Fig-

ure 5 with the relation between total land-
slides’ depth and frequency before separa-
tion (Figure 4) illustrates that amount of R2 
significantly increased in each population of 
landslides.
Table 2 describes the magnitude for each 
separated landslide population in the study 
area based on the Dp-N fractal model. The 
table presents the difference between the 
separated landslide populations and the im-
portance of considering the magnitude of 
landslides that could be useful for suscep-
tibility zonation. The extreme magnitude 
landslides are the main ones and have depth 
values higher than 19.95 m, and strong land-
slides are determined with depth values be-
tween 5 and 19.95 m. 
Amounts of P-value obtained from paired 
samples t-test and ANOVA test (Table 3) 
showed that the separate categories are sig-
nificantly different at 1% (sig=0.000).
The landslides could be considered huge, 
and very dangerous landslides occurred in 
the NE, western, and SE parts of the area, 
as shown in Figure 6a. The strong magni-
tude landslides happened in most studied 
areas, especially NE, central, northern, NW, 
and western (Figure 6b). The high-magni-
tude landslides have depths between 2.4 

Table 2) The magnitude for each separated landslide population in the study area based on the Dp-N fractal model.

Magnitude (m) >19.95 5-19.95 2.4-5 1.5-2.4 0-1.5

Description Extremely Strongly Highly Moderately Weakly

Number 6 43 65 15 13

Mean (m) 24.16 8.56 3.46 1.99 1.07

Total (m) 145 368.2 225.1 29.9 13.9

Table 3) Amounts of P-value obtained from paired samples t-test and ANOVA between the categories.

comparing the 
paired categories 

Weakly Moderately Highly Strongly comparing the means of 
different categories (ANOVA)Moderately Highly Strongly Extremely 

Variance (F) 0.481 0.016* 0.000** 0.069 
0.000** 

Mean (t-test) 0.000** 0.000** 0.000** 0.000** 
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and 5 m, which occurred in the northern, 
NE, and NW parts of the area, as illustrated 
in Figure 6c.
Figures 6-a to 6-c illustrate the distribution 
of the extremely strong and high landslides 
known as anomaly ones, indicating danger-
ous locations due to landslide occurrenc-
es. The strong and highly magnitude land-
slides happened in especially NE, central, 
northern, NW, and western parts. More-
over, the high density of these landslides in 
the northern, NE, NW, and western parts of 
the area could be interpreted that there is 
a high spatial probability for happening of 
deep landslides.
Figure 6-f shows various landslide magni-
tudes distribution maps in the area. The 
moderately and weakly magnitude land-
slides could be defined as background 
ones that conclude low-depth ranges (Fig-
ures 6d and 6e).

Figure 6) Spatial distribution of extreme landslide 
magnitude.

Figure 6 Continued) Spatial distribution of strong 
landslide magnitude.

Figure 6 Continued) Spatial distribution of high 
landslide magnitude.
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Figure 6 Continued) Spatial distribution of moder-
ate landslide magnitude.

Figure 6 Continued) Spatial distribution of weak 
landslide magnitude.

Figure 6 Continued) Spatial distribution of all land-
slide magnitude.

Correlation between the fractal model-de-
rived results and DEM shows that the ex-
treme magnitude landslides are located in 
the high elevations, especially in the NE 
part, which is associated with changes in 
land-use by human activity (Figures 7a 
and 7b).
All dangerous landslides correlated with 
agricultural lands, deforestation, gardens, 
roads, and villages in the studied area 
(Figure 7b). Furthermore, there are high 
ranges of annual maximum daily rainfalls 
(Figure 7c) and high densities of drainage 
networks (Figure 7d). Also, there are asso-
ciated with geology (lithology and faults), 
as depicted in Figures 7e, 7f, and 7g.
The correlation is good in the NE, Central, 
and NW parts of the area, indicating a high 
potential for dangerous landslides.
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Figure 7) DEM vs. LS Magnitude.

Figure 7 Continued) Human activity vs. LS Magnitude.

Figure 7 Continued) Annual Maximum Daily Rainfall 
vs. LS Magnitude.

Figure 7 Continued) Stream Density vs. LS Magnitude.
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Figure 7 Continued) Lithology vs. LS Magnitude.

Figure 7 Continued) Faults vs. LS Magnitude.

Figure 7 Continued) Fault Magnitude Density vs. LS 
Magnitude.

Discussion
Interpretation of Dp–N log–log plot for depth 
shows five landslide populations. In addi-
tion, extremely magnitude landslides were 
situated in the NE, central, and western ar-
eas with depth values higher than 19.95 m. 
The strong and highly magnitude landslides 
happened in the area's northern, NE, NW, 
and central parts, which are associated with 
severe landslides. 
Furthermore, the annual maximum daily 
rainfall, land-use (including roads, villag-
es, deforestation, garden, and agricultural 
lands), areas with high faults magnitude, 
and drainage networks density proved that 
accurate results could be obtained using the 
Dp–N fractal model; so that, extreme popu-
lations are characterized with them.
Correlation between the particulars and re-
sults obtained by the fractal modeling indi-
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cates that dangerous landslides occurred in 
the NE, NW, and central and western parts of 
the area.
Separating the populations of landslides 
based on a parameter as magnitude, e.g., 
depth, must have been considered in land-
slide susceptibility assessment since it could 
have an efficient role on the weight of influ-
ential factors. On the other hand, different 
from mass movement classification systems 
(e.g., Varnez, 1978 [48]), there are different 
groups in a mass movement type, like slides 
in this research, related to the depth which 
can affect susceptibility, hazard, and risk in-
vestigation results, so it should be consid-
ered in landslide zonation to achieve more 
certainty. Fractal mathematics can define 
different clusters depending on landslide ge-
ometry; it is not a static classification but a 
kind of dynamics classification that depends 
on each area's physiographic and climatic 
situations.

Conclusion
The study conducted on the Tajan River Ba-
sin, northern Iran, presents the potential use 
of the Dp–N fractal model for landslide clas-
sification as a practical tool for geomorpho-
logical studies. The improvements of this 
modeling rely basically on its simplicity and 
easy computational execution.
Correlation between the particulars and the 
obtained results indicates that dangerous 
landslides occurred in the NE, NW, central 
and western parts.
A fractal relationship between landslide 
depth (m) and the number was achieved 
from 142 landslide data sets and fitted to the 
observed data in Tajan Watershed, northern 
Iran. A relationship is an equation form of 
N(≥ρ) = ρ-D  and in a similar form with low 
power relationships between the area and 
volume of landslides published by [49, 57, 46].
Guzzetti et al. (2009) mentioned that land-
slides suggest a self-similar behavior in dif-

ferent physiographic and climatic environ-
ments by various triggers; it refers to the 
fractal performance of the natural phenom-
ena [43].
Adopting the fractal depth-number relation-
ship of landslides would be helpful in land-
slide zonation [46].
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