Predicting the Potential Distribution of Centaurea balsamita Lam. in the world in current conditions and future climate change

Document Type : Original Research

Authors
1 Head of Jihad-e-Keshavarzi, Kadkan section, Torbat Heydariyeh
2 Department of AgrotechnologyFaculty of Agriculture
3 Department of plant production, university of torbatheydarieh
Abstract
Aim:An attempt was made to understand the influence of climate change on thefuture potential distribution of Centaurea balsamita

In the world. Centaurea balsamita is an annual plant from thesunflower family (Asteraceae) that invades fallow and slope lands worldwide. Climate change has caused extreme weather events and has had widespread impacts on the global ecosystem, including

thedistribution of plant species.The CLIMEX software is used globally for analyzing potential distributions of species.

Material and methods:The experiments were conducted in Mashhad, Khorasan Razavi Province.In the present study,CLIMEX software was used to study thepotential distribution of this plant in the world at present and future climate conditions.CLIMEX software requires five climate variables, including average, maximum, and minimum monthly temperature, precipitation and relative humidity at 9 Am and 3 Pm.These data were obtained from various sources such as "CRU TS v. 4.03" and used for the model predictions. Following the data collection, the values were adjusted and incorporated into the CLIMEX Modelling software.Using the literature data, we collected information onThe biology and ecology of Centaurea balsamita relevant for modeling the distribution of this species in Iran and worldwide underCurrent and future climatic conditions.Findings:Our results revealed that in current conditions, Europe, Asia, and North America are suitable locations for this invasive weed dispersal, and most parts of Europe have optimal conditions (20≤ EI) for dispersal of C. balsamita. It is likely that the suitable C. balsamita habitat area will be wider in some parts of the world such as Asia, America, and Europe under future climatic
Keywords

Subjects


1.Yousefi Malekshah M., Ghazavi R., Sadatinejad S.J.Evaluating the Effect of Climate Changes on Runoff and
Maximum Flood Discharge in the Dry Area (Case Study: Tehran-Karaj Basin).ECOPERSIA 2019;7(3)-:211-221.
2.Motiee H., McBean E. Assessment of Climate Change Impacts on Groundwater Recharge for Different Soil Types-Guelph Region in Grand River Basin, Canada. ECOPERSIA 2017; 5 (2): 1731-1744.
3.Taylor S., and Kumar L. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. J. Environ. Manage. 2013; 114: 414-422.
4.Srivastava V., Lafond V., and Griess V C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB. Rev. 2019;14(20): 1-13.
5.Bradley BA., Oppenheimer M., Wilcove D.S. Climate change and plant invasion: restoration opportunities ahead? Glob. Change. Biol. 2009; 15:1511–1521.
6.Diez I., Muguerza N., Santolaria A., Ganzedo U., and Gorostiaga J.M. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 2012;99: 108-120.
7.Knezevic SZ. 2017. Invasive Plant Species, Elsevier Ltd. Encyclopedia of Applied Plant Sciences, 2nd edition, Volume, 3:300-303.
8.Mitchell H. J., and Bartsch D. Regulation of GM organisms for invasive species control. Front. Bioeng. Biotechnol. 2020;7: 454.
9.GiejsztowtJ., Classen A. T., and Deslippe J. R. Climate change and invasion may synergistically affect native plant reproduction. Ecol. 2020; 101(1): e02913.
10.Guan B. C., Guo H. J., Chen S. S., LiD M., Liu X., Gong X., and Ge G. Shifting ranges of eleven invasive alien plants in China in the face of climate change. Ecol. Inform. 2020; 55: 101024.
11.YonowT., Hattingh V., and de Villiers M. CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardiacitricarpa and the risk posed to Europe. Crop. Prot. 2013; 44:18-28.
12.Jung J. M., Jung S., Byeon D. H., and Lee W. H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycormadelicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 2017;10(4): 532-538.
13.Bhowmik P.C. Invasive weeds and climate change: past, present and future. J. crop weed. 2014; 10:345-349.
14.Zalucki M.P., and Van Klinken R.D. Predicting population dynamics of weed biological control agents: science or gazing into crystal balls? Aust. J. Entomol. 2006; 45(4): 331-344.
15.Kriticos D. J., Stephens A. E .A., and Leriche A . Effect of climate change on oriental fruit fly in New Zealand and the Pacific. N. Z. Plant. Protect.2007; 60: 271-278.
16.Bancheva S., Kaya Z., Binzet R. Morphological, cytological and palynological features of three closely related Centaurea Species (Asteraceae) from Turkey. Int. J. Plant. Morphol. 201; 5: 79–84.
17.Sousa-Ortega C., Aritz Royo-Esnal A.D., Jordi I., Inigo L., Ana I., Mari F.et al. Modeling the Emergence of North African Knapweed (Centaurea diluta), an Increasingly Troublesome Weed in Spain. Weed. Sci. 2020; 68 (3): 268-277.
18.Abdou R., Shabana S., & Rateb M. E. Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Nat. Prod. Res. 2020; 34(4): 503-510.
19.Teofilovski A. 2020, Centauravandasii, Genista pilosa and Ribes petraeum-new species in the flora of North Macedonia. J. Croat. Bot. Soc. 2020;7(2): 1-6.
20.Akin-Fajiye M., and Gurevitch J. Increased reproduction under disturbance is responsible for high population growth rate of invasive Centaurea stoebe. Biol. Invas. 2020; 22: 1947-1956.
21.Hajjaj B., El Oualkadi A., Tantaoui H., and Chentouf M. Effect of Post Emergent Herbicides on Centaurea diluta Aiton Infecting Wheat in Ouazzane Region-Morocco. Arch. Curr. Res. Int. 2019; 1-5.
22.Nosratti I., Soltanabadi S., Honarmand S.J., and Chauhan B.S. Environmental factors affect seed germination and seedling emergence of invasive Centaurea balsamita. Crop. Pasture. Sci. 2017; 6:583-589.
23.Wagenitz G., Hellwig F., Gerald P., Ludwig M. Two new species of Centaurea (Compositae, Cardueae) from Turkey. Willdenowia. 2006;36: 423–434.
24.Rechinger K.H. 1979. Compositae-Cynareae. In: Rechinger KH, editor. Flora Iranica. vol. 139a, AkademischeDruckundVerlagsanstalt, 331 – 333.
25.Ghaffari S. M., Shahraki M.A. Some Chromosome Counts and Meiotic Behavior in Centaurea Species from Iran. J. Plant. Physiol. 2001; 9(1): 11-18.
26.Yazdanipour S., Alizade H., Nosratti I., Bahraminejad S. Evaluation the effects of different factors on the seed germination and dormancy-breaking of Knapweed (Centaurea balsamita Lam.). Iran.J. Weed.Sci . 2017;13 (1): 89-96.
27.Mobin S, 2006, Culinary Iranian flora of vascular plants. Volumes 2-3. Tehran University Press, 90-105.
28.Erman M., Tepe I., Yazlik A., Levent R., and Ipek K. Effect of weed control treatments on weeds, seed yield, yield components and nodulation in winter lentil. Weed. Res. 2004; 44(4): 305-312.
29.Ozaslan C., and Gursoy S. The Effect of Conventional and Reduced Tillage Systems on Grain Yield and Weed Species Density in Common Vetch (Vicia Sativa L.) Production. Agric. For. 2015; 61(3): 53.
30. Baaghideh M., and Mayvaneh F. Climate change and simulation of cardiovascular disease mortality: A case study of Mashhad, Iran. Iran. J. Public Health. 2017; 46(3): 396.
31.Abbasian A., Asadi G., Ghorbani R. Evaluation of Invasive plant Centaurea balsamita cold Acclimated in the falling to freezing stress. Plant. Prot. 2017;31(3): 388-395.
32.Abbasian A., Asadi G., Ghorbani R. The effect of temperature on some germination index of invasive plant of Centaurea balsamita and determination of its germination Cardinal Temperatures. Iran. J. Seed. Res. 2017; 5(2):215-33.Ramirez-Cabral N. Y. Z., Kumar L., and Taylor S. Crop niche modeling projects major shifts in common bean growing areas. J. Agric. Meteorol. 2016; 218:102-113.
34. GuisanA., Thuiller W., ZimmermannN.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017.
35. Williams S., Nitschke M., Weinstein P., Pisaniello D.L., Parton K.A., Bi P. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ Int. 2012:40:33-38
36.Bourdot G. W., & Lamoureaux S. L. Abutilon theophrasti–a comparison of two climate niche models. New Zealand J. Agric. Res. 2019; 64 (2): 211-222.
37.Kistner E. J., and Hatfield J. L. Potential geographic distribution of Palmer amaranth under current and future climates. Agric. Environ. Lett. 2018; 3(1): 1-5.
38.Shackleton R.T., Witt A. B., Aool W., & Pratt C. F. Distribution of the invasive alien weed, Lantana camara, and its ecological and livelihood impacts in eastern Africa. Afr. J. Range. For. Sci. 2017; 34(1): 1-11.
39.Shrestha B.B., Pokhrel K., Paudel N., Poudel S., Shabbir A., and Adkins S. W. Distribution of Parthenium hysterophorus and one of its biological control agents (Coleoptera: Zygogrammabicolorata) in Nepal. Weed. Res. 2019; 59(6): 467-478.
40.Geng Y., van Klinken R. D., Sosa A., Li B., Chen J., and Xu C.Y. The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China. Front. Plant. Sci. 2016; 7: 213.
41.Potter K. J., Kriticos D. J., and Leriche A. Climate change impacts on Scotch broom in Australia. In Proceedings of the 16th Australian weeds conference, Cairns Convention Centre, North Queensland, Australia. 2008; 18-22.
42.Follak S., and Straussl G. Potential distribution and management of the invasive weed Solanum carolinense in Central Europe. Weed. Res. 2010; 50: 544–552.
43. Rostami A. R. 2014. Investigation of the global distribution of Ophraellacommuna and its biological control agent in the current conditions and climate change, MSc Thesis, Ferdowsi University of Mashhad, Iran
44.MosaviS K. The Effects of Climate Change on Invasion Potential of Wild Barley (Hordeum spontaneum K. Koch) in Iran and the world. Agro-Ecosystems. 2017; 9(1): 245-261.
45.Castellanos-Frias E., De Leon D. G., Bastida F., and Gonzalez-Andujar J. L. Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change. J. Agr. Sci. 2016; 154(5):755-764.
46.Ramula S., Knight T. M., Burns J.H., and Buckley Y.M. General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. J. Appl. Ecol. 2008; 45:1124–1133.
47.Perry A. L., Low P. J., Ellis J.R., and Reynolds J.D. Climate change and distribution shifts in marinefishes. Weed. Sci. 2005; 8:306- 308.
48.Rockwell-Postel M., Laginhas B.B., and Bradley B. A. Supporting proactive management in the context of climate change: Prioritizaing range-shifting invasive plants based on impact. Biol. Invas. 2020; 22: 2371-2383.
49- Duque, Tayna Sousa, Ricardo Siqueira da Silva, Josiane Costa Maciel, Daniel Valadão Silva, Bruno Caio Chaves Fernandes, Aurélio Paes Barros Júnior, and José Barbosa dos Santos. "Potential Distribution of and Sensitivity Analysis for Urochloapanicoides Weed Using Modeling: An Implication of Invasion Risk Analysis for China and Europe." Plants 11, no. 13 (2022): 1761.
50.Shabani F., Kumar L., and Taylor S. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. Plos. One. 2012; 7(10).