Ecological status assessment of eastern coastal waters of Qeshm ‎Island (Persian Gulf, Iran) based on macroalgal assemblages‎

Document Type : Original Research

Authors
Department of Marine Biology, University of Mazandaran, Babolsar, Iran.‎
Abstract
Aims: Monitoring variations in macroalgal assemblages is a crucial issue for the preservation and management program of coastal waters. This study was conducted to determine the seasonal and spatial distribution patterns, and composition of macroalgal communities along the eastern coasts of Qeshm Island, Iran.

Materials & methods: Seasonal sampling was conducted at three different sites of different tidal levels on the eastern coasts of Qeshm Island. Random samples of macroalgae were collected at three stations, seasonally. The species were identified and the dry weight of each species was used to calculate the macroalgae abundance. The Species richness and the Diversity indices were calculated to evaluate the distribution pattern and composition of the macroalgal community.

Findings: As a result, 51 species (4 Chlorophyta, 21 Phaeophyta, and 26 Rhodophyta) were identified. The seasonal and spatial dominant species were found to be Padina sp. and Hypnea sp., and a distribution pattern was seen to have increasing macroalgal biomass from the upper to lower intertidal level. The sampling sites shared more than 50% similarity of their macroalgal species, indicating a relatively homogeneous distribution. The highest (18.1±4.3 gr drywt m-2) and lowest (8.27±2.1 gr drywt m-2) mean of total seaweed biomass were recorded in winter and summer, respectively.

Conclusion: The assemblage composition of macroalgae significantly differs between hot and cold seasons, and there was no substantial compositional variation of seaweeds communities along the tidal gradient. The macroalgal distribution was largely homogeneous with no significant difference among the research areas at sampling seasons.
Keywords

Subjects


‎1.‎ Dadolahi S., Garavand-Karimi M., Riahi H., Pashazanoosi H. Seasonal ‎variations in biomass and species composition of seaweeds along the ‎northern coasts of Persian Gulf (Bushehr Province). J. Earth Syst. Sci. ‎‎2012;121(1):241-50. https://link.springer.com/article/10.1007/s12040-012-‎‎0141-6‎
‎2.‎ Fatemi S., Ghavam Mostafavi P., Rafiee F., Saeed Taheri M. The study of ‎seaweeds biomass from intertidal rocky shores of Qeshm Island, Persian Gulf. ‎IJMASE. 2012;2(1):101-6. https://ijmase.srbiau.ac.ir/article_1713.html
‎3.‎ Sangil C., Sansón M., Afonso-Carrillo J. Spatial variation patterns of subtidal ‎seaweed assemblages along a subtropical oceanic archipelago: thermal ‎gradient vs herbivore pressure. Estuar. Coast. Shelf Sci. 2011;94(4):322-33. ‎https://doi.org/10.1016/j.ecss.2011.07.004‎
‎4.‎ John D.M. Marine algae (seaweeds) associated with coral reefs in the Gulf. ‎Coral Reefs of the Gulf. Springer. 2012; p. 309-35. https://doi.org/10.1007/978-‎‎94-007-3008-3_14‎
‎5.‎ Mortazavi S., Attaeian B., Abdolkarimi S. Risk Assessment and ‎Environmental Geochemistry of Pb, Cu and Fe in Surface Sediments (Case ‎Study: Hashilan Wetland, Kermanshah, Iran). ECOPERSIA. 2016;4(2):1411-24. ‎https://ecopersia.modares.ac.ir/article-24-5019-en.html
‎6.‎ Trono G. Field guide and Atlas of the seaweed resources of the Philippines. ‎Makati City: Bookmark. Inc; 2003; 306 p.‎
‎7.‎ Raffo M.P., Russo V.L., Schwindt E. Introduced and native species on rocky ‎shore macroalgal assemblages: zonation patterns, composition and diversity. ‎Aquat. Bot. 2014;112:57-65. https://doi.org/10.1016/j.aquabot.2013.07.011‎
‎8.‎ Coppejans E., Prathep A., Leliaert F., Lewmanomont K., De Clerck O. ‎Seaweeds of Mu Ko Tha Lae Thai (SE Thailand): methodologies and field ‎guide to the dominant species: Biodiversity Research and Training Program. ‎BRT Book Series, Area-Based. Bangkok, Thailand. 2010; 274 p. ‎https://biblio.ugent.be/publication/2001771‎
‎9.‎ Kokabi M., Yousefzadi M., Razaghi M., Feghhi M.A. Zonation patterns, ‎composition and diversity of macroalgal communities in the eastern coasts of ‎Qeshm Island, Persian Gulf, Iran. Mar. Biodivers. Rec. 2016;9(1):1-11. ‎https://mbr.biomedcentral.com/articles/10.1186/s41200-016-0096-4‎
‎10.‎ Murugesan M., Chinnappu J., Manoharan P., Matheswaran P., Raja L., Gani ‎S.B. Assessment of diversity and relative richness of aquatic entomofauna in ‎Jedarpalayam Dam, Namakkal District, Tamil Nadu. Int. J. Entomol. Res. ‎‎2020;5(2):103-10. ‎http://www.entomologyjournals.com/archives/2020/vol5/issue2/5-2-25‎
‎11.‎ Khezri M., Rezaei M., Rabiey S., Garmsiri E. Antioxidant and Antibacterial ‎Activity of Three Algae from Persian Gulf and Caspian Sea. ECOPERSIA. ‎‎2016;4(2):1425-35.‎‌ ‌https://ecopersia.modares.ac.ir/article-24-10215-en.html
‎12.‎ Sohrabipour J., Rabei R. A list of marine algae from seashores of Iran ‎‎(Hormozgan Province). 1999. http://hdl.handle.net/10576/9780 ‎
‎13.‎ Sohrabipour J, Rabei R, Nezhadsatari T, Asadi M. The marine algae of the ‎southern coast of Iran, Persian Gulf, Lengeh area. IRAN. J. Bot. ‎‎2004;10(2):83-93. https://ijb.areeo.ac.ir/article_103319.html?lang=en
‎14.‎ Eriksson B.K., Sandström A., Isæus M., Schreiber H., Karås P. Effects of ‎boating activities on aquatic vegetation in the Stockholm archipelago, Baltic ‎Sea. Estuar. Coast. Shelf Sci . 2004;61(2):339-49. ‎https://doi.org/10.1016/j.ecss.2004.05.009‎
‎15.‎ Mineur F., Arenas F., Assis J., Davies A.J., Engelen AH, Fernandes F, et al. ‎European seaweeds under pressure: Consequences for communities and ‎ecosystem functioning. J. Sea Res. 2015;98:91-108. ‎https://doi.org/10.1016/j.seares.2014.11.004‎
‎16.‎ Rangel M., Pita C., Gonçalves J., Oliveira F., Costa C., Erzini K.. Eco-touristic ‎snorkelling routes at Marinha beach (Algarve): Environmental education and ‎human impacts. Mar. Policy. 2015;60:62-9. ‎https://doi.org/10.1016/j.marpol.2015.05.017‎
‎17.‎ Sangil C, Martins GM, Hernández JC, Alves F, Neto AI, Ribeiro C, et al. ‎Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos ‎‎(Macaronesian region): a spatial approach to community structure. Eur. J. ‎Phycol. 2018;53(1):83-98. https://doi.org/10.1080/09670262.2017.1385098‎
‎18.‎ Cacabelos E., Gestoso I., Ramalhosa P., Riera L., Neto A.I., Canning-Clode J. ‎Intertidal assemblages across boulders and rocky platforms: a multi-scaled ‎approach in a subtropical island. Mar. Biodivers. 2019;49(6):2709-23. ‎https://link.springer.com/article/10.1007/s12526-019-01000-7‎
‎19.‎ Piñón-Gimate A., Chávez-Sánchez T., Mazariegos-Villarreal A., Balart E.F., ‎Serviere-Zaragoza E. Species richness and composition of macroalgal ‎assemblages of a disturbed coral reef in the Gulf of California. Mexico. Acta ‎Bot. Mex. 2020;127. https://doi.org/10.21829/abm127.2020.1653‎
‎20.‎ Scrosati R., Heaven C.. Spatial trends in community richness, diversity, and ‎evenness across rocky intertidal environmental stress gradients in eastern ‎Canada. Mar. Ecol. Prog. Ser. 2007;342:1-14. ‎
https://www.jstor.org/stable/24871850‎
‎21. Williams S.L., Bracken M.E., Jones E. Additive effects of physical stress and ‎herbivores on intertidal seaweed biodiversity. Ecol. 2013;94(5):1089-101. ‎https://doi.org/10.1890/12-0401.1‎
‎22.‎ Rinne H., Salovius-Laurén S. The status of brown macroalgae Fucus spp. ‎and its relation to environmental variation in the Finnish marine area, ‎northern Baltic Sea. J. Ethnobiol. Ethnomed. 2020;49(1):118-29. ‎https://link.springer.com/article/10.1007/s13280-019-01175-0‎
‎23.‎ Lalegerie F., Gager L., Stiger-Pouvreau V., Connan S. The stressful life of ‎red and brown seaweeds on the temperate intertidal zone: Effect of abiotic ‎and biotic parameters on the physiology of macroalgae and content ‎variability of particular metabolites. Adv. Bot. Res. 2020;95:247-87. ‎https://doi.org/10.1016/bs.abr.2019.11.007‎
‎24.‎ Jiang H., Gong J., Lou W., Zou D. Photosynthetic behaviors in response to ‎intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the ‎coast of Nan’ao Island, Shantou, China. Environ. Sci. Pollut. Res. ‎‎2019;26(13):13346-53. https://link.springer.com/article/10.1007/s11356-019-‎‎04775-1‎
‎25.‎ Martins C.D., Lhullier C., Ramlov F., Simonassi J.C., Gouvea L.P., Noernberg ‎M., Maraschin M., Colepicolo P., Hall-Spencer J.M., Horta P.A. Seaweed chemical ‎diversity: an additional and efficient tool for coastal evaluation. J. Appl. Phycol. ‎‎2014;26(5):2037-45.‎‌ ‌https://link.springer.com/article/10.1007/s10811-014-‎‎0361-z
‎26.‎ Wijesinghe W., Jeon Y-J. Biological activities and potential cosmeceutical ‎applications of bioactive components from brown seaweeds: a review. ‎Phytochem Rev. 2011;10(3):431-43.‎
https://link.springer.com/article/10.1007/s11101-011-9214-4‎
‎27.‎ Xu P., Tan H., Jin W., Li Y., Santhoshkumar C., Li P., Liu W. Antioxidative and ‎antimicrobial activities of intertidal seaweeds and possible effects of abiotic ‎factors on these bioactivities. J. Oceanol. Limnol. 2018;36(6):2243-56. ‎https://link.springer.com/article/10.1007/s00343-019-7046-z
‎28.‎ Jeeva S., Marimuthu J., Domettila C., Anantham B., Mahesh M. Preliminary ‎phytochemical studies on some selected seaweeds from Gulf of Mannar, ‎India. Asian Pac. J. Trop. Biomed. 2012;2(1):S30-S3. ‎https://doi.org/10.1016/S2221-1691(12)60125-7‎
‎29.‎ Hentati F., Tounsi L., Djomdi D., Pierre G., Delattre C., Ursu A.V., , Fendri I., ‎Abdelkafi S., Michaud P. Bioactive polysaccharides from seaweeds. molecules. ‎‎2020;25(14):3152. https://doi.org/10.3390/molecules25143152‎
‎30.‎ Eggertsen M., Tano S., Chacin D., Eklöf J.S., Larsson J., Berkström C., ‎Buriyo A.S., Halling C. Different environmental variables predict distribution ‎and cover of the introduced red seaweed Eucheuma denticulatum in two ‎geographical locations. Biol. Invasions. 2021;23(4):1049-67. ‎https://link.springer.com/article/10.1007/s10530-020-02417-z
‎31.‎ Romdoni T. A., Ristiani A., Meinita M. D. N., Marhaeni B. Seaweed species ‎composition, abundance and diversity in Drini and Kondang Merak Beach, ‎Java. In E3S Web of Conferences.‎‌ ‌‎2nd Scientific Communication in Fisheries ‎and Marine Sciences (SCiFiMaS)‎‌.‌‎ 2018; 47:p. 03006. ‎https://doi.org/10.1051/e3sconf/20184703006‎
‎32.‎ Worm B., Chapman A.R. Interference competition among two intertidal ‎seaweeds: Chondrus crispus strongly affects survival of Fucus evanescens ‎recruits. Mar. Ecol. Prog. Ser. 1996;145:297-301. https://www.int-‎res.com/abstracts/meps/v145/p297-301/‎
‎33.‎ Ranahewa T., Gunasekara A., Premarathna A., Karunarathna S., ‎Jayamanne S. A‌.‌‎ Comparative study on the diversity of seagrass species in ‎selected areas of Puttalam Lagoon in Sri Lanka. Oceanogr. Mar. Res. ‎‎2018;6(3):185-192. http://www.erepo.lib.uwu.ac.lk/handle/123456789/8426‎
‎34.‎ Nybakken J. W. Marine biology: an ecological approach . San Francisco: ‎Benjamin Cummings. 2001;Vol 5.‎
‎35.‎ Ingólfsson A. Community structure and zonation patterns of rocky ‎shores at high latitudes an interocean comparison. J. Biogeogr. ‎‎2005;32(1):169-82.‎‌ ‌https://doi.org/10.1111/j.1365-2699.2004.01150.x ‎
‎36.‎ Mogaddam S.F., Bidokhti A., Givi F.A., Ezam M. Evaluation of physical ‎changes (temperature and salinity) in the Persian Gulf waters due to climate ‎change using field data and numerical modeling. Int. J. Environ. Sci. Technol. ‎‎2020;17(4):2141-52. https://link.springer.com/article/10.1007/s13762-019-‎‎02532-y
‎37.‎ Hassanzadeh S., Hosseinibalam F., Rezaei-Latifi A. Numerical modelling of ‎salinity variations due to wind and thermohaline forcing in the Persian Gulf. ‎Appl. Math. Model.‎‌ ‌‎2011;35(3):1512-37. ‎https://doi.org/10.1016/j.apm.2010.09.029‎
‎38.‎ Thongroy P., Liao L.M., Prathep A. Diversity, abundance and distribution ‎of macroalgae at Sirinart Marine National Park, Phuket Province, Thailand. ‎‎2007; 88-96. https://doi.org/10.1515/BOT.2007.010‎