1- Sohl T, Sleeter B. 15 Role of Remote Sensing for Land-Use and Land-Cover Change Modeling. Remote Sensing of Land Use and Land Cover. 2012:225. .
2- Akbari H, Rose LS, Taha H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landscape Urban Plan. 2003;63(1):1-4.
3- Yang L, Xian G, Klaver JM, Deal B. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogramm. Eng. Rem. S. 2003; 69(9):1003-10.
4- Brooks CN, Schaub DL, Powell RB, French NH, Shuchman RA. Multi-temporal and multi-platform agricultural land cover classification in southeastern Michigan. Ann. Arbor. 2006;1001:48105.
5- Gilbertson JK, Kemp J, Van Niekerk A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agr. 2017;134:151-9.
6- Rahman MR, Saha SK. Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. J. Indian. Soc. Remote. 2008;36(2):189-201.
7- Karami A, Khoorani A, Noohegar A, Shamsi SRF, Moosavi V. Gully erosion mapping using object-based and pixel-based image classification methods. Environ. Eng. Geosci. 2015;21(2):101-10.
8- Rozenstein O, Karnieli A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011;31(2):533-44.
9. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote .Sens . 2007;28(5), 823–870.
10. Petropoulos GP, Kalaitzidis C, Vadrevu KP. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012;41:99-107.
11. Oyekola MA, Adewuyi GK. Unsupervised classification in land cover types using remote sensing and GIS techniques. Int. J. Sci. Eng. Invest. 2018;7(72):11-8.
12. Campbell JB, Wynne RH. Introduction to remote sensing. Guilford Press; 2011 Jun 15.
13. Duda RO, Hart PE, Stork DG. Pattern Classification and Scene Analysis Part 1: Pattern Classification; Wiley: Chichester, UK, 2000.
14. Fukue K, Shimoda H, Matumae Y, Yamaguchi R, Sakata T. Evaluations of unsupervised methods for land‐cover/use classifications of landsat TM data. Geocarto. Int. 1988;3(2):37-44.
15. Weih RC, Riggan ND. Object-based classification vs. pixel-based classification: Comparative importance of multi-resolution imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2010;38(4):C7.
16. Alganci U, Sertel E, Ozdogan M, Ormeci C. Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in Southeastern Turkey. Photogram. Eng. Remote. Sens. 2013; 79(11):1053-65.
17. Myburgh G, Van Niekerk A. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. S. Afr. J. Geol. 2013;2(1):13-27.
18. Zheng B, Myint SW, Thenkabail PS, Aggarwal RM. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth. Obs. 2015; 34:103-12.
19. Berhane TM, Lane CR, Wu Q, Anenkhonov OA, Chepinoga VV, Autrey BC. Comparing pixel-and object-based approaches in effectively classifying wetland-dominated landscapes. Remote Sens-Basel. 2018;10(1):46.
20. Coppin P, Lambin E, Jonckheere I, Muys B. Digital change detection methods in natural ecosystem monitoring: A review. Ser. Remote. Sens. 2002:3-6.
21. Ghassemian H. A review of remote sensing image fusion methods. Inform Fusion. 2016;32:75-89.
22. Ghodekar HR, Deshpande AS, Scholar PG. Pan-sharpening based on non-subsampled contourlet transform. NCVPRIPG 2013. 2016; 1:2831.
23. Ai J, Gao W, Gao, Z, Shi, R, Zhang, C, Liu, C. Integrating pan-sharpening and classifier ensemble techniques to map an invasive plant in an estuarine wetland using Landsat 8 imagery. J. Appl. Remote. Sens. 2016;10(2):026001.
24. Paola JD, Schowengerdt RA. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE T. Geosci. Remote. 1995;33(4):981-96.
25. Abburu S, Golla SB. Satellite image classification methods and techniques: A review. Int. J. Comput. Appl. 2015;1:119(8).
26. Akcay O, Avsar EO, Inalpulat M, Genc L, Cam A. Assessment of segmentation parameters for object-based land cover classification using color-infrared imagery. ISPRS. Int. Geo-Inf. 2018 Nov;7(11):424.
27. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. 2004;58(3-4):239–258.
28. Rwanga SS, Ndambuki JM. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017;8(04):611.
29. Sarkar A. Accuracy assessment and analysis of land use land cover change using geoinformatics technique in Raniganj coalfield area, India. International Journal of Environmental Sciences & Natural Resources. 2018;11(1):25-34.
30. Behnia N, Zare M, Moosavi V, Khajeddin S.I. Evaluation of a Hierarchical Classification Method and Statistical Comparison with Pixel-Based and Object-Oriented Approaches. ECOPERSIA. 2020;8(4):209-219.
31. Hayatzadeh M, Fathzadeh A, Moosavi V. Improving the Accuracy of Land Use/Cover Maps using an Optimization Technique. ECOPERSIA. 2019; 7(4):183-193.
32. Parvizi Y, Heshmati M, Gheituri M. Intelligent approaches to analyze the importance of land use management in soil carbon stock in a semiarid ecosystem, west of Iran. ECOPERSIA. 2017;5(1):1699-709.