Abudu, S., Cue, C.L. King, J.P. and Abudukadeer, K. Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water. Sci. Eng., 2010; 3(3): 269-281.
Akaike, H. A new look at the statistical model identification. IEEE. Trans. Auto. Cont., 1987; 19(6): 716-723.
Alam, N.M., Mishra, P.K. Jana, C. and Adhikary, P.P. Stochastic model for drought forecasting for Bundelkhand region in Central India. Indian. J. Agri. Sci., 2014; 84 (1): 79-84.
Alley, W. M., The Palmer Drought Severity Index: limitations and assumptions. J. Clim. Appl. Meteorol., 1984; 23: 1100-1109.
American Meteorological Society. Meteorological drought – policy statement. Bull. Am. Meteorol. Soc., 1997; 78: 847-849.
Azarakhshi, M., Mahdavi, M. Arzani, H. and Ahmadi, H. Assessment of the Palmer drought severity index in arid and semi-arid rangeland: (Case study: Qom province, Iran). Desert. 2013; 16: 77-85.
Bazrafshan, J. and Khalili, A. Spatial Analysis of Meteorological Drought in Iran from 1965 to 2003. DESERT. 2013; 18: 63-71.
Bazrafshan, J., Hejabi, S. and Habibi Nokhandan, M. Is the SPI sufficient for monitoring meteorological droughts in extreme costal climates of Iran? Adv. Nat. Appl. Sci. 2010; 4(3): 345-351.
Ben-Zvi, A. Indices of hydrological drought in Israel. J Hydrol. 1987; 92: 179-191.
Box, GEP. and Jenkins, GM. Time series analysis forecasting and control. Holden - Day, San Francisco Press, San Francisco, USA. 1976; 567 P.
Duru, O.F. A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach. Expert. Sys. Appl., 2010; 37: 5372-5380.
Fathabadi, A., Gholami, H. Salajeghe, A. Azanivand, H. and Khosravi, H. Drought Forecasting Using Neural Network and Stochastic Models. Am. Eur. Net. Sci. Info., 2009; 3(2): 137-146.
Fernandez, C., Vega, J.A. Fonturbel, T. and Jimenez, E. Streamflow drought time series forecasting: a case study in a small watershed in North West Spain. Stoch. Environ. Res. Risk. Assess. 2009; 23: 1063-1070.
Garen, D.C. Revised surface-water supply index for western United States. J. Water. Res. Plan. Manage. 1993; 119(4): 437-454.
Ghanbarpour, M.R., Abbaspour, K.C. Jalalvand, G. and Moghaddam, G.A. Stochastic modeling of surface stream flow at different time scales: Sangsoorakh karst basin, Iran. J. of Cave and Karst Studies, 2010; 72(1):1-10.
Haan, C.T. Statistical methods in hydrology. Iowa State Press Iowa, USA. 1977; 345 P.
Han, P., Wang, P.X. Zhang, S.Y. and Zhu, D.H. Drought forecasting based on the remote sensing data using ARIMA models. Math. Comput. Model. 2010; 52: 1398-1403.
Hayes, MJ., Svoboda, MD., Wilhite, DA. and Vanyarkho, OV. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meterol. Soc., 1999; 80: 429-438.
Hejabi, S. Bazrafshan, J. and Ghahraman, N. Comparison of stochastic and artificial neural networks models in modeling and forecasting the standardized precipitation index values and classes. Phys. Geogr. Res. 2013; 45(2): 92-112.
Hosseinzadeh Talaee, P., Tabari, H. and Ardakani, S. Hydrological drought in the west of Iran and possible association with Large-scale atmospheric circulation pattern. Hydrol. process. 2014; 28: 764-773.
Jalalkamali, A., Moradi, M. and Moradi, N. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. Int. J. Environ. Sci. Tech., 2015; 12: 1201-1210.
Karimi, M., and Shahedi, K. Hydrological drought analysis of Karkheh River basin in Iran using variable threshold level method. Curr. World. Environ. J., 2013; 8 (3): 419-428.
Karl, T.R. and Knight, R.W. Atlas of monthly Palmer Drought Severity Indices for the continuous United States. Historical Climatology Series 3-10 (1895-1930) and 3-11 (1931-1983). National Climatic Data Center, Asheville, USA, 1985; 39-41.
Karl, T.R. The sensitivity of the Palmer Drought Severity Index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration. J. Clim. Appl. Meteor., 1986; 25: 77-86.
Lee, C., and Ko, C. Short-term load forecasting using lifting scheme and ARIMA models. Expert. Syst. Appl. J., 2011; 38: 5902-5911.
Liu, Y., and Hwang Y. Improving drought predictability in Arkansas using the ensemble PDSI forecast technique. Stoch. Environ. Res. Risk. Assess., 2015; 1: 79-91.
Ljung, G.M., and Box, G.E. On a measure of lack of fit in time series models. Biometrika. 1978; 65(2): 297-303.
Lorenzo-Lacruz, J., Moran-Tejeda, E. Vicente-Serrano, S.M. and Lopez-Moreno, J.I. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrol. Earth Syst. Sci., 2012; 17: 119-134.
Makridakis, S., Wheelwright, S.C. and Hyndman, R. Forecasting Methods and Applications, John Wiley and Sons (ASIA) Press, Singapore. 2003; 656 P.
Mandelbrot, B. and Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968; 10(4): 422-437.
McKee, T.B., Doesken, N.J. and Kleist, J. Drought monitoring with multiple time scales. Ninth Conference on Applied Climatology, American Meteorological Society, Dallas TX, USA, 1995; 675-687.
McKee, TB., Doesen, N.J. and Kleist, J. The relationship of drought frequency and duration to time scales. Preprints, 8th Conference on Applied Climatology, California, USA, 1993; 234-245 P.
Mendicino, G., Alfonso, S. and Pasquale, V. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J. Hydrol., 2008; 282-302.
Mishra, A.K. and Desai, V.R. Drought forecasting using feed-forward recursive neural network. J. Eco. Model., 2006; 19: 127-138.
Mishra, AK., and Desai, VR. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk. Assess., 2005; 19: 326-339.
Modarres, R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk. Assess. 2006; 21: 223-233.
Montgomery, D.C., Runger, G.C. and Hubele, N.F. Engineering statistics. John Wiley and Sons Press, Arizona, USA. 2009; 512 P.
Morid, S., Smakhtin, and Moghaddasi, V.M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Clim., 2006; 26; 971-985.
Nalbantis, N. and Tsakiris, G. Assessment off hydrological drought revisited. J. Water. Res. Manag., 2009; 23: 883-897.
Rodríguez-Iturbe, I., Vanmarcke, EH. and Schaake, JC. Problems of Analytical Methods in Hydrologic Data Collections. Proceedings, Symposium on Uncertainties in Hydrologic and Water Resources Systems, Tucson, Arizona, 1972; 433-460 P.
Roughani, M., Ghafouri, M. and Tabatabaei, M. An innovative methodology for the prioritization of sub-catchments for flood control. Interna. J. Appl. Earth. Observ. and Geoinform. 2007; 9: 79-87.
Salas, J.D., J. Delleur, W. Yevjevich, V. and Lane, W.L. Applied modeling of hydrological time series, Water Resources Publication, Chicago, USA. 1988; 483 P.
Schwartz, G. Estimating the dimension of a model. Annals. Stat. 1978; 6: 461-464.
Shafer, B.A. and Dezman, LE. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proceedings of the Western Snow Conference, Reno, Nevada, USA, 1982; 233-345 P.
Shalamu, A., Chun-Liang, C. James, and Kaiser, K.A. Comparison of performance of statistical models in forecasting monthly stream flow of Kizil River, China. Water. Sci. and Eng., 2010; 3(3): 269-281.
Shukla, S. and Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 2008; 35: 1-7.
Tabari, H., Nikbakht, J. and Hoseinzadeh Talaee, P. Hydrological drought assessment in northwesterniran based on streamflow drought index (SDI). Water. Res. Manag. 2013; 27: 137-151.
Tsakiris, G. and Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water. 2005; 9-10: 1-9.