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ABSTRACT The present research was planned to evaluate the skill of linear stochastic models 

known as ARIMA and multiplicative Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model in the quantitative forecasting of the Standard Runoff Index (SRI) in Karkheh 

Basin. To this end, SRI was computed in monthly and seasonal time scales in 10 hydrometric 

stations in 1974-75 to 2012-13 period of time and then the modeling of SRI time series was 

done to forecast the one to six months of lead-time and up to two seasons of lead-time. The SRI 

values related to 1974-75 to 1999-2000 were used to develop the model and the residual data 

(2000-2001 to 2012-13) were used in model validation. In the validation stage, the observed and 

the predicted values of SRI were compared using correlation coefficient, error criteria and 

statistical tests. Finally, models skills were determined in view point of forecasting of lead-time 

and the time scale of drought evaluation. Results showed that the model accuracy in forecasting 

two months and one season of lead-time was high. In terms of the forecasting of SRI values, the 

skill of SARIMA in monthly time scale (with a RMSE and a MAE of 0.61 and 0.45 respectively 

and a correlation coefficient average of 0.72) was better than its skill in seasonal time scale. The 

application of SARIMA in monthly time scale was therefore preferred to its application in 

seasonal time scale.   
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1   INTRODUCTION 

Drought is one of the inseparable characteristics 

of each climate that is occurred due to the long 

term lack of precipitation (Morid et al., 2006; 

Bazrafshan and Khalili, 2013; Azarakhshi et al., 

2013). This physical phenomenon in long term 

leads to the agricultural drought and then the 

hydrological drought and decreases the water 

resources through declining the surface and 

groundwater flows (Liu and Hwang, 2015).  

Forecasting the time of drought occurrence 

plays an important role in planning and 

management of natural resources and water 

resources systems in a watershed scale (Jalal 

kamali et al., 2015).  

Efficiency of drought monitoring system is 

affected by an index which is selected regarding 

the drought condition in the region. Over the 

years, diverse indices have been innovated to 

monitor the drought in meteorology, 

agriculture, hydrologic, and social-economic 

parts (Mendicino et al., 2008) that each index 

anyhow reflects the related characteristics 

(American Meteorological Society, 1997). 

Among the diverse indices to monitor the 

climatic drought, SPI (McKee  1993) as the 

most famous index, is used extensively in all of 

the world in terms of the simple access to the 

data (precipitation); also, the possibility of its 

calculation in each time scale; the possibility of 

calculating the magnitude, frequency, and 

duration of drought; the possibility of early 

diagnosis of soil moisture and the possibility of 

showing the spatial distribution of areas under 

drought (Hayes  1999; Mishra and Desai, 

2005). 

Existing indices for characterizing a 

hydrological drought such as Surface Water 

Supply Index (SWSI) (Shafer and Dezman, 

1982; Garen, 1993; or Palmer Hydrological 

Drought Index (PHDSI) (Alley, 1984; Karl and 

Knight, 1985; Karl, 1986) and Reconnaissance 

Drought Index (RDI) (Tsakiris and Vangelis, 

2005; Nalbantis and Tsakiris, 2009; Bazrafshan 

et al., 2010) are data demanding and 

computationally intensive. On the other hands, 

for monitoring meteorological drought have been 

proposed very simple and effective indices such 

as Standardized Precipitation Index (SPI) 

(McKee 1993 and 1995). An index similar to the 

SPT based on the monthly average streamflow 

which is named Standard Runoff Index (SRI) 

was used to solve this problem. This index was 

the first time suggested by Ben-Zvi (1987) and 

then was developed by Modares (2006), Shukla 

and wood (2008), Nalbantis and Tsakiris 

(2009), Lorenzo-Lacruz et al. (2012) and 

Hosseinzadeh Talaee et al. (2014). 

The time series models used in the 

streamflow forecasting process are mostly 

linear models. They were built under the 

assumption that the process follows normal 

distribution, but most streamflow processes are 

nonlinear (Wang, 2006). The stochastic models 

was classified in to two categories of (1) linear 

models as the auto-regressive models (AR), 

moving average models (MA), auto-regressive 

moving average models, (ARMA) (Box and 

Jenkins, 1976), and disaggregation models 

(Salas  1988); and (2) non-linear models as the 

Fractional Gaussian Noise models, FGN 

(Mandelbrot and Van Ness, 1968), the broken 

line models, BL (Rodríguez-Iturbe 1972).  

Mishra and Desai (2005 and 2006) and 

Fathabadi et al. (2009) focused on drought 

forecasting using SPI as a drought indicator and 

ARIMA model. The predicted results using the 

best models were compared with the observed 

data. The predicted value decreases with 

increase in lead-time. Abudu et al. (2010) 

predicted the drought using seasonal 

autoregressive integrated moving average 

(SARIMA) and autoregressive integrated 

moving average (ARIMA) models in Kizil 

River in China. Results revealed the appropriate 

skill of the model in forecasting the one month 

ahead. In addition, Han et al. (2010) and 

Lorenzo- Lacruz et al. (2012) believed that time 
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series model had the skill of maximum 3 lead-

time ahead. Tabari et al. (2013) also developed 

hydrological droughts monitoring by using the 

streamflow drought index (SDI) in the 

mountainous regions of northwestern Iran. 

Results showed that almost all the stations 

experienced extreme the driest years during the 

examined period 12 years. Hejabi et al. (2013) 

in their research resulted that the skill of 

ARIMA model decreases by increasing the 

lead-time of forecast. Alam et al. (2014) 

predicted the climatologically drought in 3, 6, 9, 

12 and 24 time scales by ARIMA and SARIMA. 

Results showed a good agreement between the 

observed data and the forecasted data up to 3 

lead- time ahead. Ultimately, Wang et al. (2015) 

predicted the annual flow by ARIMA. Based on 

the results, skill of the model increased 

considerably in combination with the Artificial 

Neural Network (ANN).  

The ARIMA models seem to offer a 

potential to develop reliable forecasts towards 

prediction of drought duration and severity. The 

ARIMA model approach has several 

advantages over other methods, in particular, its 

forecasting capability, its richer information on 

time-related changes, or the consideration of 

serial correlation between observations. Also, 

few parameters are required for describing time 

series, which exhibit non-stationary both within 

and across the seasons. 

The aim of this research is assessing the 

efficiency of stochastic known as (ARIMA) and 

(SARIMA) models in forecasting the hydrologic 

drought in monthly and seasonal time scales and 

determining the amount of the efficiency of the 

models in the forecasting lead-time.  
 

2 MATERIALS AND METHODS 

2.1 Study area 

The study area, Karkheh Basin in west of the 

Iran, located in the central and southern regions 

of the Zagros Mountain range and its area is 

more than 50000 km
2
. In terms of the 

geographical coordination, this region has been 

extended between 46˚ 06′ - 49˚ 10′ E longitudes 

and 30˚ 58′ - 34˚ 56′ N latitudes (Figure 1). 

Hydrologically, the basin is divided into five sub-

basins viz. Gamasiab, Qarasou, Kashkan, 

Saymareh and south Karkheh. Water in the basin 

is mainly used for agriculture production, 

domestic supplies, and fish farming but also 

serves to sustain the environment. For the latter, a 

major concern is the sustainability of the Hoor-Al-

Azim swamp that is a Ramsar site located at the 

Iran–Iraq border (Karimi and Shahedi, 2013).  

Among the stations located in five principle 

sub basins of Karkheh Basin, 10 hydrometric 

stations with 38 years statistical period length 

from 1974-75 to 2012-13 were selected 

according to the appropriate spatial distribution 

and having sufficient data (Table 1). The 

average annual discharge changes from 3.3 to 

86 m
3 

s
-1

. The maximum discharge is 190.6 

which is related to the Pol-E Zal Station in the 

outlet of the river basin and the minimum 

discharge is 0.7 m
3
 s

-1
 which is related to the 

Doabmerk Station. The highest amount of the 

standard deviation is in the Pol-E Zal Station.  

 

2.2 Standardized Runoff Index (SRI) for 

hydrologic drought analysis 

Based on the computational principles of SRI, 

at first, the monthly discharge amounts are 

fitted to an appropriate distribution. Researches 

have shown that gamma distribution and log 

normal or bivariate log normal distributions had 

the best fitting in small and large basins, 

respectively (Nalbantis and Tsakiris, 2009). 

Therefore, monthly discharge amounts were 

fitted by the relation of the selected distribution 

and the cumulative probability of the selected 

distribution was computed. Accordingly 

transformation of cumulative co-probability of 

selected distribution to the normal distribution 

was done. In the last phase, normalized 

standardized Z variable or SRI related to each 
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amount of discharge in each station was 

extracted from normal cumulative probabilities 

curve (Shukla and Wood, 2008; Nalbantis and 

Tsakiris, 2009). SRI classification has been 

presented in Table 2. 

 

 
Figure 1 Spatial distribution of the hydrometric stations in Karkheh Basin, Iran 

 

Table 1 Characteristics of selected hydrometric stations in Karkheh Basin, Iran 
 

Station 

Code 
Sub basin 

Hydrometric 

Station 
Latitude Longitude 

Statistical properties of annual 

discharge series (1974–2012) 

Average 
Max  

(m
3 
s

-1
) 

Min 

(m
3 
s

-1
) 

 

Standard 

Deviation 

1 Gamasiab Doab  47  º   54′ 34  22′ 15.42 32.44 4.06 7.66 

2 Gamasiab Polchehr 47  º   26′ 34  20′ 32.5 77.3 6.2 15.2 

3 Gharesoo Doabmerk 47   º 46′ 34  33′ 5.5 12.06 0.71 2.91 

4 Gharesoo Ghourbaghestan 47 15′ 34  13′ 20.6 4.6 3.3 9.4 

5 Kashkan Holilan 47 15′ 34  44′ 71.57 146.47 19.16 22.29 

6 Kashkan Tangesazoo 46 50′ 34  33′ 3.9 8.4 1.2 1.6 

7 Seimareh Visan 47 57′ 34  29′ 10.9 19.16 5.72 3.57 

8 Seimareh Afarineh 47 53′ 34  19′ 3.3 4.4 1.28 0.52 

9 
Karkheh 

Paeen 
Jelogir 47 48′ 32  58′ 9.36 18.76 3.17 3.65 

10 
Karkheh 

Paeen 
Pol-Ezal 47 10′ 32  25′ 86 190.6 14.4 36.5 

Persian 

Gulf 
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Table 2 Hydrological drought classification by SRI value and corresponding event probability (Nalbantis and 

Tsakiris, 2009; Hosseinzadeh Talaee et al., 2014) 
 

State Description Criterion 

0 Non- drought SRI   

1 Mid-drought    SRI   

2 Moderate drought      SRI    

3 Severe drought    SRI      

4 Extreme drought SRI    

 

2.3 Time series models  

Linear stochastic models known as ARIMA are 

used in the present study. AR models have been 

extensively used in hydrology and modeling in 

annual time scale for water resource. 

Autoregressive- moving average mixed behavior 

could be modeled by adding moving average 

(MA) component to the Autoregressive (AR) 

component. An AR model of order p and moving 

average model of order q combined to obtain the 

mixed ARMA of order (p,q) (Jalal Kamali,  

2015). It’s defined by (Eq. 1): 
 

1 0

1 0

1
p q

t i i j t j

i j

Z Z for    

 

              

(1) 

 

Where Zt is the observed series,  is the polynomial 

of order p and θ is the polynomial of order q. 

AR, MA and ARMA can be used when the 

data are stationary. ARMA models can be 

extended to non-stationary series by allowing 

differencing of data series. These models are 

called ARIMA models. 

The general non-seasonal ARIMA model is 

AR to order p and MA to order q and operates on 

the d
th
 difference of the time series Zt; thus, a 

model of the ARIMA family is classified by three 

parameters (p, d, q) that can have zero or positive 

integral values (Mishra and Desai, 2005; 

Fernandez,  2009 ). 

The general non-seasonal ARIMA model can be 

written following based on (Eq. 2): 

 

( )(1 ) ( )d

t tB B Z B   
                               

(2) 

 

Where  and   are polynomials of order p and q, 

respectively (Eqs. 3 and 4): 

 
2

1 2( ) (1 ... )p

pB B B B       
            

(3) 

 

2

1 2( ) (1 ... )q

qB B B B       
              

(4) 

 

Box and Jenkins (1979) generalized ARIMA (p, 

d, q)x  and obtained the multiplicative ARIMA (p, 

d, q)x (P, D,Q)w model which consist of seasonal 

ARMA (P,Q) fitted to the D
th
 seasonal difference 

of the data coupled with an ARMA (p,q) model 

fitted to the d
th 

difference of the residual of the 

former model (Eq. 5): 

 

( ) ( )(1 ) (1 ) ( ) ( )w w D d w

P p t Q q tB B B B Z B B     
            

(5)
                                                            

 

 

Where p is the order of non-seasonal auto 

regression, d the number of regular differencing, q 

the order of non-seasonal MA, P the order of 

seasonal auto regression, D the number of seasonal 

differencing, Q the order of seasonal MA, w is the 

length of season P  and Q  are seasonal 

polynomials of order P and Q (Jalal Kamali 2015). 

Time series model development modeling 

consists of three stages identification, estimation, 

and diagnostic test (Box and Jenkins, 1976; 

Mishra and Desai, 2005; Modarres, 2006; Duru, 

2010; Wang 2015). The identification stage 

involves transforming the data to the normality.  

Box and Jenkins (1976) described the model 

identification step as a rough procedure for laying 

down the initial model structure. This stage 

identified by examining autocorrelation function 
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(ACF), partial autocorrelation function (PACF) 

(Duru 2010; Wang et al. 2015) and Akaike 

information criterion (AIC) (Akaike, 1987), 

corrected Akaike information criterion (AICC) 

and Bayesian information criterion (SBC). 

Minitab software Version 17 and XLSTAT 2015 

were used for time series model development 

in this stage. ACF and PACF were used to 

statistically measure if earlier values in the series 

have some relation to later values. By looking at 

the ACF and PACF plots of the differenced series, 

we could tentatively identify the numbers of AR 

and/or MA terms that were needed.  

The model gives the minimum (AICC) and 

(SBC) which is selected as the best-fit model 

(Mishra and Desai, 2005; Duru, 2010). The 

mathematical formulation for the AICC and SBC 

(Schwarz 1978) was developed as following (Eqs. 

6 and 7): 

 

 

 

 
2

2 1
( , , , ) . (

2
)

p q P Q N
AICC p q P Q N ln

N p q P Q


 
   


    

      

(6) 

 

         ( )  (        )   ( )  (7) 

 

Where N denotes the number of observations, L 

denotes the likelihood function of the ARIMA 

models and it is a monotonically decreasing 

function of the sum of squared residuals.  

SBC is usually a better criterion than AIC 

when the number of samples is low. AICC is the 

revised version of AIC and acts well even by low 

number of samples (Mishra and Desai, 2005; 

Alam 2014). 

After the identification of model using the 

AICC and SBC criteria estimation of parameters 

is done with Minitab 17 software. After 

identification of the model and estimation of the 

parameters, diagnostic test is applied to the fitted 

model to verify the adequacy of the model. 

Several tests are employed for diagnostic test that 

consists of: Portmanteau lack-of-fit test, Normal 

probability plot of residuals and Kolmogorov–

Smirnov statistics of residuals and White noise 

ACF and PACF of residuals. 

 

2.3.1 Portmanteau lack-of-fit test to check 

the independence of residuals. 

Portmanteau lack-of-fit test was modified to 

Ljung-Box-Pierce statistics proposed by Ljung 

and Box (1978) employed to check the 

independence of residuals. In order to test the null 

hypothesis that a current set of autocorrelations is 

white noise, test statistics are calculated for 

different total numbers of successive lagged 

autocorrelations using the Ljung-Box-Pierce 

corrected statistics (Q*r test) to test the adequacy 

of the model. The Q*r statistic is formulated as 

follows Eq. 8: (Duru, 2010; Lee and Ko, 2011).  

 

 
 2

*

1
2

L k

k

r
Q n n

n k




 


                         (8) 

 

Where L is the total number of lagged 

autocorrelations under investigation, rk is the 

sample, and autocorrelation of the residuals at lag 

k. Qr* values are compared with the value of 
2
 

distribution with a degree of freedom and a 

significant level of 95%, N is total observation. 

 

2.3.2 Normal probability plot of residuals 

and Kolmogorov–Smirnov statistics of 

residuals 

Kolmogorov-Smirnov test (K-S test) was used to 

test the normality of residuals from different sets 

of models of the fit of data. (Eq. 9): 
 

ˆ  max ( ) ( )D F x F x                                       (9) 

 

Where D is the maximum deviation, ( )F x  the 

completely specified theoretical cumulative 

distribution function under the null hypothesis, 

ˆ ( )F x is the sample cumulative density function 

based on n observations. For a chosen 

significance level α, for D greater than the critical 
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value Dtab, the null hypothesis related to normality 

is rejected for the chosen level of significance. 

Also, basic statistical properties are compared 

between observed and forecasted data for 6 month 

and 2 seasons lead-time, using Z-test for the 

means and F-test for standard deviation (Haan, 

1977). 

The Z test was used to compare the average of 

the observed and forecasted values. If we select n 

random samples of normal community with a µ 

average and a σ standard deviation, the   ̅ average 

will be distributed normally with a µ average and 

a 
 

√ 
 standard deviation. Therefore, the Z value 

was acquired by relation 10 (Eq. 10): 

(Montgomery, 2009).  

 

        (10) 
x

Z

n






  

 

For Z amounts less than 1.96, null hypothesis 

based on the equality of the forecasted and 

observed values is accepted.   

The F test was used to compare the variance of 

forecasted values with the variance of the 

observed values. With n1 samples of the first 

community and n2 samples of the second 

community with variances s1
2
 and s2

2
 respectively, 

the F distribution with k1 and k2 degree of 

freedom is acquired by Eq. 11: if the values of 

computational F be less than the F of the table in 

5% error level, null hypothesis based on the 

equality of the variances of the forecasted and 

observed values will be accepted (Eq. 11): 

(Montgomery, 2009).  

 

                                                                                        

                                                  (11) 

 

 

2.3.3 White noise ACF and PACF of 

residuals 

For a good forecasting model, the residuals, left 

over after fitting the model, must satisfy the 

requirements of a white noise process. There are 

two useful applications related to PACF for the 

independence of residuals. The first is the 

correlogram drawn by plotting rk against lag k, 

where rk is the residual ACF function (Lee and 

Ko, 2011).  

 

2.3.4 Model validation 

 Following tests were used to evaluate the 

accuracy of the forecasted standardized stream 

flow:  

- Correlation between observed and forecasted 

time series (Eq. 12). The coefficient of correlation 

R was selected as the degree of collinearity 

criterion of level prediction (Wang  2015). 

- The root mean square error for forecasted 

standardized stream flow (Eq. 13). (Roughani et 

al., 2007; Shalamu et al., 2011; Liu and Hwang, 

2015)  

-The mean absolute error (Eq. 14) (Mishra and 

Desai , 2006) 

Each of the error coefficients provided special 

and unique information that the other coefficient 

don’t provide them. RMSE showed the errors 

more than 1 as the overestimation and the errors 

less than 1 as the underestimation that this 

characteristic was so suitable to examine the 

terminal errors, namely the values of errors which 

were distributed at the two ends of the error 

distribution. Although, MAE coefficient 

considered the average of the real values of the 

error, it ignored the direction of the error 

variations (Makridakis et al. 2003). Therefore, 

those two mentioned indices at the above were 

used in this research to determine the error of the 

model in two seasonal and annual scales (Eqs. 12 

to 14): 

 

  
 

 
∑ (  ( )  ̅ )(  ( )  ̅ )
 
   

√
 

 
∑ (  ( )  ̅ )

  
   √

 

 
∑ (  ( )  ̅ )

  
        

    (12) 

 

     √
 

 
∑ (  ( )    ( ))

  
                 (13) 

2

1

2

2

S
F

S

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∑ |  ( )   ( )|
 
   

 
                                  (14) 

 

Where   ( ) and   ( ) were respectively, the 

observed and forecasted SRI,   ̅  and  ̅  denoted 

their means, and N was the number data points 

considered. 

 

3 RESULTS AND DISCUSSIONS 

3.1 Hydrological drought properties based on 

SRI 

Based on the methodology of Shukla and Wood, 

2008 and Nalbantis and Tsakiris, 2009, log 

normal distribution was identified as the most 

appropriate distribution to discharge data of the 

hydrometric stations of Karkheh Basin.  Figure 2 

showed the SRI values in monthly and seasonal 

scales. Based on this figure, there are 

continuously wet and drought periods in the river 

basin. So that, the extremely drought is related to 

1982-83 and 1988-89 years with a magnitude of -

2.5 and duration of 3-month. 

The regional time series of SRI value is 

calculated using the discharge weighted average 

over the Karkheh Basin. The time series of 

monthly and seasonal hydrologic drought are 

shown in Figure 2. 

 

3.2 Stochastic model development 

The data set from 1974 -1975 to 2011-2012 

were used to develop the model (water years). 

A split sample procedure was used for the 

calibration and validation of the model. In each 

of the monthly and seasonal database, the flow 

data from 1974-75 to 1999-2000 were used for 

calibration and the data from 2000-01 to 2012-

13 were used for the validation of the model.

 

 

 
 

Figure 2 SRI Monthly (Top) and seasonal (Bottom) time series based on the discharge weighted average over 

the Karkheh Basin 
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3.2.1 Identification 

Identification of the general form model 

involves two steps. First, the data series is 

analyzed for stationary and normality. Second, 

the temporal correlation structures of the 

transformed data are identified by examining its 

autocorrelation (ACF) and partial 

autocorrelation (PACF) function (Ghanbarpour 

et al., 2010). 

The ACF and PACF were estimated for 

monthly and seasonal SRI in the Visan 

hydrometric station which has been shown in 

Figure 3. The PACF showed that the series 

were stationary. The ACF was damping out in 

sine-wave manner with significant spikes at the 

first five lags. The first two values were 

significant in PACF which indicated the 

process could be modeled as a combination of 

both AR and MA processes. 

The identification of the best seasonal and 

non-seasonal models for hydrological drought 

in the different locations depends on the 

minimum AICC and SBC criteria which were 

presented in Table 3.  

 

3.2.2 Estimation 

After the identification of model using the 

AICC and SBC criteria, estimation of 

parameters is done. The summary of the 

statistical parameters of the best fitted models 

under the study have been given in Table 4. 

 

 

 

 

 

 

 

 
 

Figure 3 ACF (Top) and PACF (Bottom) plots used for stochastic monthly and seasonal series at Visan 

hydrometric station 

 

 

 

 

 

 

 

Seasonal  
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Table 3 Summary of AICC and SBC parameters of the best fitted ARIMA models 
 

Station 

Code 
Model (Monthly) AICC SBC Model (Seasonal) AICC SBC 

 ARIMA (2,1,1)(1,0,0)12 476.191 494.890 ARIMA (0,1,3)(0,0,2)4 245.858 261.055 

1 ARIMA (0,1,4)(0,0,3)12 478.339 508.102 ARIMA (0,1,3)(1,0,2)4 247.813 265.391 

 ARIMA (2,1,1)(2,0,0)12 477.883 500.283 ARIMA (1,1,1)(0,0,2)4 247.601 260.371 

 ARIMA (3,1,1)(2,0,1)12 426.036 463.074 ARIMA (1,1,1)(0,0,3)4 247.605 262.737 

2 ARIMA (3,1,4)(2,0,1)12 428.234 428.234 ARIMA (0,1,2)(0,0,3)4 247.823 262.955 

 ARIMA (3,1,3)(2,0,1)12 428.642 463.235 ARIMA (1,1,1)(1,0,2)4 248.697 263.829 

 ARIMA (1,1,2)(1,0,0)12 360.344 379.043 ARIMA (1,1,3)(1,0,0)4 210.002 225.199 

3 ARIMA (1,1,2)(2,0,0)12 362.159 384.559 ARIMA (0,1,3)(0,0,0) 213.367 223.666 

 ARIMA (1,1,4)(1,0,0)12 363.110 389.198 ARIMA (013)(100)4 214.023 226.793 

 ARIMA (1,1,1)(1,0,2)12 495.018 517.418 ARIMA (111)(100)4 244.060 254.359 

4 ARIMA (1,1,3)(1,0,2)12 495.018 517.418 ARIMA (111)(001)4 244.063 254.401 

 ARIMA (1,1,3)(1,0,0)12 499.541 514.526 ARIMA (013)(001)4 244.532 257.302 

 ARIMA (1,1,2)(0,0,1)12 508.969 527.668 ARIMA (1,0,0)(0,0,0) 267.339 272.589 

5 ARIMA (1,1,2)(1,0,0)12 508.296 526.995 ARIMA (1,1,1)(1,1,1)4 269.933 277.719 

 ARIMA (2,1,1)(1,0,0)12 508.415 527.114 ARIMA (0,1,3)(1,0,2)4 270.392 287.970 

 ARIMA (1,1,1)(0,0,1)12 574.012 588.997 ARIMA (0,1,2)(1,0,1)4 270.350 283.120 

6 ARIMA (1,1,1)(1,0,0)12 574.107 589.092 ARIMA (0,1,3)(1,0,1)4 272.092 287.289 

 ARIMA (1,1,2)(1,0,0)12 574.890 593.589 ARIMA (1,1,1)(1,0,1)4 272.087 284.857 

 ARIMA (1,0,0)(0,1,2)12 600.543 615.385 ARIMA (1,1,1)(0,0,1)4 280.628 290.928 

7 ARIMA (1,0,0)(1,1,1)12 600.599 615.441 ARIMA (1,1,1)(1,0,0)4 280.726 290.95 

 ARIMA (1,0,1)(0,1,2)12 602.167 620.686 ARIMA (1,1,2)(0,0,1)4 282.386 295.156 

 ARIMA (1,1,2)(1,0,3)12 493.967 523.730 ARIMA) 0,1,2((0,0,3)4 269.916 285.113 

8 ARIMA (1,1,2)(1,0,4)12 494.108 527.532 ARIMA (0,1,3)(1,0,1)4 271.486 286.683 

 ARIMA (1,1,2)(2,0,3)12 496.248 529.672 ARIMA (0,1,3)(1,0,2)4 271.915 289.494 

 ARIMA(1,0,2) (0,0,0) 518.184 533.181 ARIMA)1,1,1((0,0,2)4 255.657 268.427 

9 ARIMA)2,1,2((1,0,0)12 519.671 542.071 ARIMA (1,1,1)(1,0,2)4 256.819 272.016 

 ARIMA(1,0,3) (0,0,0) 520.804 539.519 ARIMA (0,1,2)(1,0,2)4 257.694 272.891 

 ARIMA (3,0,0) (0,0,0) 679.517 694.515 ARIMA (1,1,1)(1,0,2)4 289.539 304.736 

10 ARIMA (3,0,1) (0,0,0) 682.568 701.283 ARIMA (1,1,2)(2,0,0)4 294.837 310.034 

 ARIMA (3,0,2) (0,0,0) 684.975 707.395 ARIMA (1,1,2)(1,0,0)4 293.927 306.697 
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Table 4 Summary of the statistical analysis of model parameters 
 

  
Variables in the model  

Station Code Model (Monthly) parameter 
Value of 

parameters 
Standard 

error 
t- ratio P<0.05 

  
ϕ1 -0.8769 0.075 -11.69 0 

1 
ARIMA (2,1,1) 

(1,0,0)12 
ϕ2 -0.0088 0.0583 -0.15 0.88 

  
Φ1 -0.1085 0.0575 -1.89 0.06 

  
θ1 -0.9251 0.0498 -18.58 0 

  
ϕ1 0.2982 0.1994 1.5 0.136 

  
Φ2 -0.2902 0.1797 -1.61 0.107 

  
Φ3 0.3918 0.1288 3.04 0.003 

  
θ1 -0.7142 0.3607 -1.98 0.049 

2 
ARIMA (3,1,3) 

(2,0,1)12 
θ2 0.0204 0.0895 0.23 0.82 

  
θ3 0.2564 0.1894 1.35 0.177 

  
Φ1 -0.0052 0.1617 -0.03 0.974 

  
Φ2 0.598 0.1184 5.05 0 

  
Θ2 -0.8104 0.3588 -2.26 0.025 

  ϕ1 0.8083 0.0398 20.28 0 
  θ1 0.1834 0.0578 3.17 0.002 

3 
ARIMA (1,1,2) 

(1,0,0)12 
θ2 0.7803 0.0016 498.05 0 

  Φ1 0.2074 0.0181 11.48 0 
  ϕ1 0.7695 0.0434 17.74 0 
  Φ1 0.638 0.1618 3.94 0 

4 
ARIMA (1,1,1) 

(1,0,2)12 
θ1 0.9504 0.0213 44.68 0 

  Θ 1 0.6815 0.1685 4.05 0 
  Θ 2 0.1382 0.0739 1.87 0.062 
  ϕ1 0.7693 0.0411 18.73 0 
  θ1 0.7659 0.0002 4689.55 0 

5 
ARIMA (1,1,2) 

(0,0,1)12 
θ2 0.2232 0.0159 14.02 0 

  Θ 2 -0.077 0.0576 -1.34 0.183 
  ϕ1 0.7387 0.038 19.46 0 

6 
ARIMA (1,1,1) 

(0,0,1)12 
θ1 0.9665 0.0065 147.6 0 

  Θ 1 0.0564 0.0564 1 0.319 
  ϕ1 0.7467 0.0337 22.16 0 

7 
ARIMA (1,0,0) 

(0,1,2)12 
Θ 1 0.7008 0.0515 13.61 0 

  Θ 2 0.0401 0.0529 0.76 0.449 
  ϕ1 0.7467 0.0337 22.16 0 

  θ1 0.7008 0.0515 13.61 0 

8 
ARIMA (1,1,2) 

(1,0,3)12 
θ2 0.0401 0.0529 0.76 0.449 

  Θ 1 0.7467 0.0337 22.16 0 
  Θ 2 0.7008 0.0515 13.61 0 
  Θ 3 0.0401 0.0529 0.76 0.449 
  ϕ1 0.8469 0.0479 17.69 0 

9 ARIMA (1,0,2)  θ1 -0.1091 0.0767 -1.42 0.156 
  θ2 0.201 0.0723 2.78 0.006 
  ϕ1 0.8162 0.0548 14.89 0 

10 ARIMA (3,0,0) ϕ2 -0.2601 0.0698 -3.72 0 
  ϕ3 0.1995 0.0548 3.64 0 
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3.2.3 Diagnostic test 

Results of the normal probability (K-S test) of 

residuals and Portmanteau lack-of-fit test in 

monthly and seasonal scales in study stations 

have been presented in Table 5. Portmanteau 

test showed that the calculated value was less 

than the actual 
2
 value, which signified that the 

present models were adequate on the available 

data. K-S test showed that for all models the 

Dcal was less than Dtab at 5% significant level 

and satisfied that the residuals were normally 

distributed.  

In order to determine whether the residuals of 

the selected models from the AFC and PACF 

graphs were independent several tests for 

diagnostic checks were used. The ACF and 

PACF of residuals for monthly and seasonal 

SRI time series in the Visan hydrometric station 

were demonstrated in Figure 4. Based on figure 

4, ACF and PACF residuals in monthly and 

seasonal time scales were located in confidence 

range and the time independence test for 

residuals was accepted. 

  

Table 5 K-S test and Qr stat calculation of residuals for SRI series 
 

Station 

Code 
SDI Model K-S Test  Portmanteau Test 

 
 

 
Dtab Dcal  Q* df χ

2
 

1 

Monthly ARIMA 

(2,1,1)(1,0,0)12 0.109 0.067 

 

34.18 29 42.56 

 

seasonal ARIMA (0,1,3)(0,0,2)4 0.095 0.072  5.63 6 59.12 

2 

Monthly ARIMA 

(3,1,3)(2,0,1)12 0.109 0.064 

 

22.08 23 35.17 

 

seasonal ARIMA (1,1,3)(0,0,3)4 0.095 0.209  23.4 6 59.12 

3 

Monthly ARIMA 

(1,1,2)(1,0,0)12 0.109 0.043 

 

26.04 29 42.56 

 seasonal ARIMA (1,1,3)(1,0,0)4 0.095 0.058  12.56 6 59.12 

4 

Monthly ARIMA 

(1,1,1)(1,0,2)12 0.109 0.040 

 

26.56 28 34.41 

 seasonal ARIMA (1,1,1)(1,0,0)4 0.095 0.084  8.9 7 14.07 

5 

Monthly ARIMA 

(1,1,2)(0,0,1)12 0.109 0.051 

 

20.61 29 42.56 

 seasonal ARIMA (1,0,0)(0,0,0) 0.095 0.063  11.86 10 18.31 

6 

Monthly ARIMA 

(1,1,1)(0,0,1)12 0.109 0.081 

 

29.34 30 43.77 

 seasonal ARIMA (0,1,2)(1,0,1)4 0.095 0.082  5.48 7 14.07 

7 

Monthly ARIMA 

(1,0,0)(0,1,2)12 0.109 0.039 

 

29.34 30 43.77 

 seasonal ARIMA (1,1,1)(0,0,1)4 0.095 0.073  1.40 9 16.92 

8 

Monthly ARIMA 

(1,1,2)(1,0,3)12 0.109 0.067 

 

26.27 26 38.89 

 seasonal ARIMA (0,1,2)(0,0,3)4 0.095 0.083  0.07 6 59.12 

9 Monthly ARIMA (1,0,2) 0.109 0.071  34 30 43.77 

 seasonal ARIMA (1,1,1)(0,0,2)4 0.095 0.059  74.92 7 14.07 

10 Monthly AR (3,0,0) 0.109 0.060  16.22 28 34.41 

 

seasonal ARIMA (1,1,1)(1,0,2)4 0.095 0.092  12.13 7 14.07 
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3.3 Monthly and seasonal hydrologic 

drought forecasting 

The forecast was done for monthly and seasonal 

one lead-time using the best models from 

hydrometric data. The plot between observed 

data and predicted data using the selected best 

model for all SRI time series is shown in Figure 

5. 
 

 

 
 

  
 

Figure 4 Diagnostic test of the best-fitted ARIMA model for Visan hydrometric station SRI time series 

 

 

 
Figure 5 Comparison of observed data with forecasted data using best ARIMA models (in Visan hydrometric station) 

Seasonal 
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Performance analysis of forecasting models 

consist of R, RMSE and MAE was represented 

in Table 6. Results showed that with a longer 

lead-time, the coefficient of correlation 

decreased and error coefficient increased 

between observed and predicted data. Therefore 

the selected best models from ARIMA building 

approach using a time series data of SRI can be 

used for the drought forecasting. 

The Z test and F test computed for comparison 

of mean and variance, from each model were 

presented in Table 7. Result showed that there 

was no significant difference between the mean 

and variance values of observed and predicted 

data. Since calculated Z values (Zcal) related to 

means were between Zcritical table values (±1.96 for 

two-tailed at a 5% significance level), the Zcal 

values indicate that there was no significant 

difference between the mean values of observed 

and predicted data. Similarly, the Fcal values of 

standard deviation were smaller than the Fcritical 

values at a 5% significance level. Thus, the results 

showed that predicted data preserved the basic 

statistical properties of the observed series. 

 

Table 6 Coefficient of correlation and error between observed and predicted data for different lead-time 
 

 
 

Monthly Seasonal 

Station 

Code 
Lag Time 1 2 3 4 5 6 1 2 

 R 0.766* 0.502* 0.340* 0.312 0.12 0.12 0.364* 0.086 

1 RMSE 0.503 0.533 0.690 0.736 0.781 1.00 0.644 0.731 

 MAE 0.43 0.54 0.609 0.719 0.78 0.761 0.482 0.622 

 R 0.79* 0.652* 0.569* 0.349* 296* 0.276* 0.277 0.132 

2 RMSE 0.502 0.754 0.802 0.819 0.9 0.690 0.74 0.776 

 MAE 0.399 0.569 0.59 0.604 0.801 0.860 0.562 0.608 

 R 0.701* 0.606* 0.598* 0.541* 0.369* 0.209* 0.684* 0.302 

3 RMSE 0.56 0.68 0.698 0.742 0.801 0.9 0.620 0.838 

 MAE 0.412 0.467 0.509 0.612 0.743 0.744 0.493 0.676 

 R 0.77* 0.657* 0.340* 0.21 0.129 0.112 0.357* 0.135 

4 RMSE 0.509 0.619 0.698 0.788 0.802 0.823 0.707 0.739 

 MAE 0.392 0.425 0.512 0.589 0.612 0.65 0.539 0.589 

 R 0.743* 0.501* 0.478* 0.405* 0.301* 0.287* 0.372* 0.164 

5 RMSE 0.75 1.29 1.45 1.76 1.89 1.99 0.759 0.788 

 MAE 0.585 0.964 0.998 1.23 1.43 1.7 0.641 0.613 

 R 0.720* 0.563* 0.459* 0.348* 0.304* 0.298* 0.223 0.286 

6 RMSE 0.604 0.871 0.9 1.07 1.11 1.35 0.628 0.599 

 MAE 0.359 0.645 0.98 1.00 1.05 1.19 0.526 0.523 

 R 0.55* 0.412* 0.387* 0.345* 0.319* 0.3* 0.373* 0.147 

7 RMSE 0.98 0.976 0.98 0.988 0.989 0.977 0.805 0.833 

 MAE 0.65 0.698 0.71 0.756 0.771 0.774 0.616 0.664 

 R 0.798* 0.445* 0.304* 0.137 0.175 0.159 0.324* 0.315* 

8 RMSE 0.60 0.96 1.05 1.01 1.075 1.12 0.959 0.923 

 MAE 0.502 0.71 0.801 .871 .898 0.9 0.815 0.750 

 R 0.789* 0.448* 0.262* 0.17 -0.13 -0.1 0.397* -0.02 

9 RMSE 0.504 0.723 0.743 0.904 0.90 0.96 0.908 0.981 

 MAE 0.3 0.61 0.54 0.598 0.67 0.78 0.676 0.699 

 R 0.634* 0.123 -0.21 -0.22 0.22 -0.123 -0.12 -0.194 

10 RMSE 0.625 0.91 0.734 0.743 0.658 0.754 0.907 0.903 

 MAE 0.501 0.70 0.702 0.7 0.677 0.70 0.753 0.772 
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Table 7 Comparison of statistic properties of the observed and predicted data 
 

Station Code 

SRI 

Variance Variance 
Fcal<Ftab 

Mean  Mean 
Z<1.96 

observed forecasted observed forecasted 

1 
Monthly 0.565 0.574 0.98<1.76 -0.70 -0.716 0.132 

Seasonal 0.44 0.19 0.38<1.94 -0.710 -0.796 0.99 

2 
Monthly 0.76 0.645 0.1<1.76 -0.545 -0.515 0.245 

Seasonal 0.567 0.180 0.308<1.94 -0.494 -0.492 0.16 

3 
Monthly 0.801 0.603 1.32<1.7 -0.834 -0.723 0.23 

Seasonal 0.714 0.44 0.62<1.94 -0.868 -0.966 0.83 

4 
Monthly 0.513 0.414 1.23<1.7 -0.47 -0.71 0.81 

Seasonal 0.533 0.239 0.44<1.94 -0.529 -0.558 1.45 

5 
Monthly 0.441 0.792 0.552<1.7 -0.314 0.1 0.91 

Seasonal 0.346 0.44 0.42<1.94 -0.357 -0.229 1.2 

6 
Monthly 0.644 0.406 1.58<1.7 -0.534 -0.876 0.094 

Seasonal 0.626 0.282 0.45<1.94 -0.647 -0.684 0.202 

7 
Monthly 1.1 0.9 1.2<1.7 -0.326 -0.337 0.074 

Seasonal 0.7 0.17 0.24<1.94 -0.398 -0.419 0.44 

8 
Monthly 1.14 0.896 1.27<1.7 -0.402 -0.334 0.11 

Seasonal 0.992 0.386 0.38<1.94 -0.410 -0.345 0.50 

9 
Monthly 0.8 0.548 1.4<1.7 0.71 0.41 0.78 

Seasonal 0.778 0.51 0.74<1.94 -0.576 -0.651 0.36 

10 
Monthly 0.61 0.42 1.45<1.7 -0.286 -0.21 0.91 

Seasonal 0.49 0.099 0.203<1.94 -0.324 -0.093 1.85 

 

4 CONCLUSION  

The aim of this research is the evaluation of the 

skill of linear and multiplicative ARIMA 

models in forecasting the hydrologic drought in 

monthly and seasonal time scales in Karkheh 

Basin. In both time scales, correlation 

coefficient between observed and forecasted 

values decreased with increasing the lead - time 

and the value of error coefficients increase that 

this was compatible with the results of Mishra 

and Desai (2005 and 2006), Fathabadi et al. 

(2009), and Hejabi et al. (2013). ARIMA 

model, based on the previous time series 

memory, forecasts the values linearly and uses 

the previous forecast lead-time to forecast the 

next lead-time, therefore, the values of 

forecasting error increase cumulatively with 

increasing the lead-time and the values of 

correlation coefficient decreased.  

Results of the ARIMA model in terms of the 

skill in the lead-time of forecast show that the 

model was able to predict the two months and 

one season of lead-time with a high accuracy 

that this was in agreement with the results of 

Abudu et al. (2010), Han et al. (2010), 

Lorenzo-Lacruz et al. (2012), Hejabi et al. 

(2013) and Alam et al. (2014). 

Comparison of the results of ARIMA model 

in seasonal and monthly time scales showed 

that the ability of the model to forecast the 

drought in seasonal time scale was less than its 

ability in monthly time scale that its main cause 

was the low amount of data in seasonal time 

scale relative to the amount of data in monthly 

time scale. These results were exactly similar to 

the results of Ghanbarpour et al. (2010).  

Time series models used in this research to 

forecast the 6 lead-time ahead in monthly time 
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scale and 2 lead-time ahead in seasonal time 

scale showed that multiplicative ARIMA model 

was able to predict the hydrologic drought with 

a high accuracy to at least the 3 lead-time. 

Therefore, if the forecasting was done in short 

term lead-time this model can be used to 

develop the programs combating with drought 

and sustainable management of water resources 

in the other watershed basins with similar 

hydro-climatic condition. Finally, use of the 

other forecasting tools like Wavelet 

Transforms, Artificial Neural Network (ANN), 

Support Vector Machine (SVM), and the other 

predictors such as climatic signals was 

suggested to forecast the hydrologic drought in 

medium and long term time scales.  
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‌آریماهای‌‌بینی‌خشکسالی‌هیذرولوشیکی‌با‌استفاده‌از‌مذل‌پیش

 بخیس‌کرخه(وزه‌آح)مطالعه‌موردی:‌

‌

1البٌ٘ي بذرافطاى ام
 5هزج احوذ فاتحٖ ٍ 4هحوذ هْذٍٕ ،3جَاد بذرافطاى، 2علٖ سلاجقِ، *

 

 اٗزاى ّزهشگاى، بٌذرعباس،داًطگاُ هٌابع طب٘عٖ، کطاٍرسٕ ٍ داًطکذُ هزتع ٍ آبخ٘شدارٕ، گزٍُ استادٗار،  -1

 داًطکذُ هٌابع طب٘عٖ، داًطگاُ تْزاى، کزج، اٗزاى کَّستاًٖ،اح٘اء هٌاطق خطک ٍ گزٍُ ، استاد  -2

 ، اٗزاىج، داًطگاُ تْزاى، کز، داًطکذُ کطاٍرسٕ هٌْذسٖ آب٘ارٕ ٍ آباداًٖگزٍُ ، داًط٘ار -3

 گزٍُ اح٘اء هٌاطق خطک ٍ کَّستاًٖ، داًطکذُ هٌابع طب٘عٖ، داًطگاُ تْزاى، کزج، اٗزاىاستاد،  -4

 اٗزاى ،تْزاى، پژٍّطکذُ حفاظت خاک ٍ آبخ٘شدارٕهذٗزٗت خطکسالٖ کطاٍرسٕ ٍ هٌابع طب٘عٖ، گزٍُ استادٗار،  -5

 

 1334آباى  23/ تارٗخ چاپ:  1334آباى  21/ تارٗخ پذٗزش:  1334ت٘ز  11تارٗخ درٗافت: 

‌

‌ ضاخص بٌٖ٘ کوّٖ  در پ٘ص تصادفٖ هزکبخطٖ ٍ  تصادفّٖإ  ّذف اس پژٍّص پ٘ص رٍ، بزرسٖ کاراٖٗ هذلچکیذه

هاّاًِ ٍ ّإ سهاًٖ  در هق٘اس، SRI است. بزإ اٗي اهز، هحاسبٔبَدُ  آبخ٘ش کزخِ حَسُدر  (SRI) جزٗاى استاًذارد ضذُ

  SRI ّإ سهاًٖ ساسٕ سزٕ هذل ٍ اًجام ضذ 2012-2013 تا 1374-1375در دُ اٗستگاُ ّ٘ذرٍهتزٕ طٖ دٍرٓ فصلٖ، 

  SRI  اًجام گزفت. هقادٗز در هق٘اس هاّاًِ ٍ تا دٍ گام بِ جلَ در هق٘اس فصلٖ گام بِ جلَ ضصبٌٖ٘ ٗک تا  بزإ پ٘ص

بزإ  (2012-2013ا ت 2000-2001) ّا ٍ هابقٖ ، بزإ تَسعٔ هذل1333-2000تا  1374-1375هزبَط بِ دٍرٓ 

 SRI بٌٖ٘ ضذُ سٌجٖ، هقاٗسٔ هقادٗز هطاّذُ ضذُ ٍ پ٘صسٌجٖ هذل هَرد استفادُ قزار گزفت. در هزحلٔ صحت صحت

ّا اس  . در ًْاٗت، اٍلَٗت دقت هذلصَرت پذٗزفتّإ آهارٕ  آسهَى ٍ ضاخص خطا، ضزٗب ّوبستگٖبا استفادُ اس 

کِ  دست آهذُ ًطاى داد: ًتاٗج بِ .ذضتع٘٘ي خطکسالٖ هق٘اس سهاًٖ بزرسٖ  ٍ بٌٖ٘ ّاٖٗ چَى، افق سهاًٖ پ٘ص دٗذگاُ

اس ًظز  چٌ٘ي، بالا بَدُ است. ّنتزت٘ب دٍ هاُ ٍ ٗک فصل بعذ  در هق٘اس سهاًٖ هاّاًِ ٍ فصلٖ بِ بٌٖ٘ هذل دقت پ٘ص

 RMSE  ٍMAEه٘اًگ٘ي تزت٘ب با  )بِهاّاًِ در هق٘اس سهاًٖ  تصادفٖ هزکب، هذل  SRIبٌٖ٘ هقادٗز هْارت پ٘ص

  .داضتِ استاٍلَٗت ًسبت بِ هق٘اس فصلٖ ( 72/0ٍ ه٘اًگ٘ي ضزٗب ّوبستگٖ  45/0ٍ 61/0

‌

،‌‌کلمات‌کلیذی: ،  بشرگٖ خطکسالٖ  سزٕ سهاًّٖإ هذل ،تصادفّٖإ  ، هذلضاخص استاًذارد ضذُ جزٗاىتذاٍم خطکسالٖ

 


