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ABSTRACT The present research was planned to evaluate the skill of linear stochastic models
known as ARIMA and multiplicative Seasonal Autoregressive Integrated Moving Average
(SARIMA) model in the quantitative forecasting of the Standard Runoff Index (SRI) in Karkheh
Basin. To this end, SRI was computed in monthly and seasonal time scales in 10 hydrometric
stations in 1974-75 to 2012-13 period of time and then the modeling of SRI time series was
done to forecast the one to six months of lead-time and up to two seasons of lead-time. The SRI
values related to 1974-75 to 1999-2000 were used to develop the model and the residual data
(2000-2001 to 2012-13) were used in model validation. In the validation stage, the observed and
the predicted values of SRI were compared using correlation coefficient, error criteria and
statistical tests. Finally, models skills were determined in view point of forecasting of lead-time
and the time scale of drought evaluation. Results showed that the model accuracy in forecasting
two months and one season of lead-time was high. In terms of the forecasting of SRI values, the
skill of SARIMA in monthly time scale (with a RMSE and a MAE of 0.61 and 0.45 respectively
and a correlation coefficient average of 0.72) was better than its skill in seasonal time scale. The
application of SARIMA in monthly time scale was therefore preferred to its application in
seasonal time scale.
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1 INTRODUCTION

Drought is one of the inseparable characteristics
of each climate that is occurred due to the long
term lack of precipitation (Morid et al., 2006;
Bazrafshan and Khalili, 2013; Azarakhshi et al.,
2013). This physical phenomenon in long term
leads to the agricultural drought and then the
hydrological drought and decreases the water
resources through declining the surface and
groundwater flows (Liu and Hwang, 2015).
Forecasting the time of drought occurrence
plays an important role in planning and
management of natural resources and water
resources systems in a watershed scale (Jalal
kamali et al., 2015).

Efficiency of drought monitoring system is
affected by an index which is selected regarding
the drought condition in the region. Over the
years, diverse indices have been innovated to
monitor the drought in  meteorology,
agriculture, hydrologic, and social-economic
parts (Mendicino et al., 2008) that each index
anyhow reflects the related characteristics
(American Meteorological Society, 1997).
Among the diverse indices to monitor the
climatic drought, SPI (McKee 1993) as the
most famous index, is used extensively in all of
the world in terms of the simple access to the
data (precipitation); also, the possibility of its
calculation in each time scale; the possibility of
calculating the magnitude, frequency, and
duration of drought; the possibility of early
diagnosis of soil moisture and the possibility of
showing the spatial distribution of areas under
drought (Hayes 1999; Mishra and Desai,
2005).

Existing indices for characterizing a
hydrological drought such as Surface Water
Supply Index (SWSI) (Shafer and Dezman,
1982; Garen, 1993; or Palmer Hydrological
Drought Index (PHDSI) (Alley, 1984; Karl and
Knight, 1985; Karl, 1986) and Reconnaissance
Drought Index (RDI) (Tsakiris and Vangelis,
2005; Nalbantis and Tsakiris, 2009; Bazrafshan
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et al, 2010) are data demanding and
computationally intensive. On the other hands,
for monitoring meteorological drought have been
proposed very simple and effective indices such
as Standardized Precipitation Index (SPI)
(McKee 1993 and 1995). An index similar to the
SPT based on the monthly average streamflow
which is named Standard Runoff Index (SRI)
was used to solve this problem. This index was
the first time suggested by Ben-Zvi (1987) and
then was developed by Modares (2006), Shukla
and wood (2008), Nalbantis and Tsakiris
(2009), Lorenzo-Lacruz et al. (2012) and
Hosseinzadeh Talaee et al. (2014).

The time series models used in the
streamflow forecasting process are mostly
linear models. They were built under the
assumption that the process follows normal
distribution, but most streamflow processes are
nonlinear (Wang, 2006). The stochastic models
was classified in to two categories of (1) linear
models as the auto-regressive models (AR),
moving average models (MA), auto-regressive
moving average models, (ARMA) (Box and
Jenkins, 1976), and disaggregation models
(Salas 1988); and (2) non-linear models as the
Fractional Gaussian Noise models, FGN
(Mandelbrot and Van Ness, 1968), the broken
line models, BL (Rodriguez-Iturbe 1972).

Mishra and Desai (2005 and 2006) and
Fathabadi et al. (2009) focused on drought
forecasting using SPI as a drought indicator and
ARIMA model. The predicted results using the
best models were compared with the observed
data. The predicted value decreases with
increase in lead-time. Abudu et al. (2010)

predicted the drought wusing seasonal
autoregressive integrated moving average
(SARIMA) and autoregressive integrated

moving average (ARIMA) models in Kizil
River in China. Results revealed the appropriate
skill of the model in forecasting the one month
ahead. In addition, Han et al. (2010) and
Lorenzo- Lacruz et al. (2012) believed that time
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series model had the skill of maximum 3 lead-
time ahead. Tabari et al. (2013) also developed
hydrological droughts monitoring by using the
streamflow drought index (SDI) in the
mountainous regions of northwestern Iran.
Results showed that almost all the stations
experienced extreme the driest years during the
examined period 12 years. Hejabi et al. (2013)
in their research resulted that the skill of
ARIMA model decreases by increasing the
lead-time of forecast. Alam et al. (2014)
predicted the climatologically drought in 3, 6, 9,
12 and 24 time scales by ARIMA and SARIMA.
Results showed a good agreement between the
observed data and the forecasted data up to 3
lead- time ahead. Ultimately, Wang et al. (2015)
predicted the annual flow by ARIMA. Based on
the results, skill of the model increased
considerably in combination with the Artificial
Neural Network (ANN).

The ARIMA models seem to offer a
potential to develop reliable forecasts towards
prediction of drought duration and severity. The
ARIMA  model approach has several
advantages over other methods, in particular, its
forecasting capability, its richer information on
time-related changes, or the consideration of
serial correlation between observations. Also,
few parameters are required for describing time
series, which exhibit non-stationary both within
and across the seasons.

The aim of this research is assessing the
efficiency of stochastic known as (ARIMA) and
(SARIMA) models in forecasting the hydrologic
drought in monthly and seasonal time scales and
determining the amount of the efficiency of the
models in the forecasting lead-time.

2 MATERIALS AND METHODS

2.1 Study area

The study area, Karkheh Basin in west of the
Iran, located in the central and southern regions
of the Zagros Mountain range and its area is
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more than 50000 km? In terms of the
geographical coordination, this region has been
extended between 46° 06’ - 49° 10’ E longitudes
and 30° 58 - 34° 56’ N latitudes (Figure 1).
Hydrologically, the basin is divided into five sub-
basins viz. Gamasiab, Qarasou, Kashkan,
Saymareh and south Karkheh. Water in the basin
is mainly used for agriculture production,
domestic supplies, and fish farming but also
serves to sustain the environment. For the latter, a
major concern is the sustainability of the Hoor-Al-
Azim swamp that is a Ramsar site located at the
Iran—Iraq border (Karimi and Shahedi, 2013).
Among the stations located in five principle
sub basins of Karkheh Basin, 10 hydrometric
stations with 38 years statistical period length
from 1974-75 to 2012-13 were selected
according to the appropriate spatial distribution
and having sufficient data (Table 1). The
average annual discharge changes from 3.3 to
86 m® s™. The maximum discharge is 190.6
which is related to the Pol-E Zal Station in the
outlet of the river basin and the minimum
discharge is 0.7 m® s which is related to the
Doabmerk Station. The highest amount of the
standard deviation is in the Pol-E Zal Station.

2.2 Standardized Runoff Index (SRI) for
hydrologic drought analysis
Based on the computational principles of SR,
at first, the monthly discharge amounts are
fitted to an appropriate distribution. Researches
have shown that gamma distribution and log
normal or bivariate log normal distributions had
the best fitting in small and large basins,
respectively (Nalbantis and Tsakiris, 2009).
Therefore, monthly discharge amounts were
fitted by the relation of the selected distribution
and the cumulative probability of the selected
distribution was computed. Accordingly
transformation of cumulative co-probability of
selected distribution to the normal distribution
was done. In the last phase, normalized
standardized Z variable or SRI related to each
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amount
extracte

of discharge in each station was Tsakiris, 2009). SRI classification has been
d from normal cumulative probabilities presented in Table 2.

curve (Shukla and Wood, 2008; Nalbantis and
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Figure 1 Spatial distribution of the hydrometric stations in Karkheh Basin, Iran

Table 1 Characteristics of selected hydrometric stations in Karkheh Basin, Iran

Station

Statistical properties of annual
discharge series (1974-2012)

Hydrometric

Code Sub basin Station Latitude Longitude Max Min
Average m*s?Y)  (m°s?Y Stapdgrd
Deviation
1 Gamasiab Doab 47° 54’ 34° 22’ 15.42 32.44 4.06 7.66
2 Gamasiab Polchehr 47° 26" 34° 20/ 325 77.3 6.2 15.2
3 Gharesoo Doabmerk 47° 46 34° 33’ 5.5 12.06 0.71 291
4 Gharesoo  Ghourbaghestan ~ 47° 15’ 34° 13’ 20.6 4.6 3.3 9.4
5 Kashkan Holilan 47° 15’ 34° 44’ 71.57 146.47  19.16 22.29
6 Kashkan Tangesazoo 46° 50’ 34° 33’ 3.9 8.4 1.2 1.6
7 Seimareh Visan 47° 57 34° 29’ 10.9 19.16 5.72 3.57
8 Seimareh Afarineh 47° 53’ 34° 19’ 3.3 4.4 1.28 0.52
9 Karkheh Jelogir 47°48  32° 58 936 1876  3.17 3.65
Paeen
10 Karkheh Pol-Ezal 47°100  32° 25' 86 1906 14.4 36.5
Paeen
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Table 2 Hydrological drought classification by SRI value and corresponding event probability (Nalbantis and
Tsakiris, 2009; Hosseinzadeh Talaee et al., 2014)

State Description Criterion
0 Non- drought SRI<S 0
1 Mid-drought —1 >SRI< 0
2 Moderate drought —1.5 >SRI< -1
3 Severe drought —2 >SRI< —-1.5
4 Extreme drought SRI< -2

2.3 Time series models

Linear stochastic models known as ARIMA are
used in the present study. AR models have been
extensively used in hydrology and modeling in
annual time scale for water resource.
Autoregressive- moving average mixed behavior
could be modeled by adding moving average
(MA) component to the Autoregressive (AR)
component. An AR model of order p and moving
average model of order g combined to obtain the
mixed ARMA of order (p,g) (Jalal Kamali,
2015). It’s defined by (Eq. 1):

P q
Z, :Z(Bizi—l_zejgl—j 6, =-1
i=l j=0 (1)

Where Z; is the observed series, ¢ is the polynomial
of order p and 6 is the polynomial of order g.

AR, MA and ARMA can be used when the
data are stationary. ARMA models can be
extended to non-stationary series by allowing
differencing of data series. These models are
called ARIMA models.

The general non-seasonal ARIMA model is
AR to order p and MA to order g and operates on
the d" difference of the time series Z;, thus, a
model of the ARIMA family is classified by three
parameters (p, d, g) that can have zero or positive
integral values (Mishra and Desai, 2005;
Fernandez, 2009 ).

The general non-seasonal ARIMA model can be
written following based on (Eg. 2):

¢(B)(L-B)'Z, =6(B)s, 0
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Where ¢ and & are polynomials of order p and q,
respectively (Egs. 3 and 4):

¢(B)=(1-¢B-¢,B’—..—¢,B") ©)

G(B):(1—6?18—9282—...—0q8q) 4
Box and Jenkins (1979) generalized ARIMA (p,
d, q)x and obtained the multiplicative ARIMA (p,
d, q)x (P, D,Q), model which consist of seasonal
ARMA (P,Q) fitted to the D" seasonal difference
of the data coupled with an ARMA (p,g) model
fitted to the d™ difference of the residual of the
former model (Eg. 5):

®, (B")p,(B)(1-B")°(1-B)'Z, =0, (B")0,(B)5, ®)
Where p is the order of non-seasonal auto
regression, d the number of regular differencing, q
the order of non-seasonal MA, P the order of
seasonal auto regression, D the number of seasonal
differencing, Q the order of seasonal MA, w is the

length of season ®, and ©, are seasonal

polynomials of order P and Q (Jalal Kamali 2015).
Time series model development modeling
consists of three stages identification, estimation,
and diagnostic test (Box and Jenkins, 1976;
Mishra and Desai, 2005; Modarres, 2006; Duru,
2010; Wang 2015). The identification stage
involves transforming the data to the normality.
Box and Jenkins (1976) described the model
identification step as a rough procedure for laying
down the initial model structure. This stage
identified by examining autocorrelation function
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(ACF), partial autocorrelation function (PACF)
(Duru 2010; Wang et al. 2015) and Akaike
information criterion (AIC) (Akaike, 1987),
corrected Akaike information criterion (AICC)
and Bayesian information criterion (SBC).
Minitab software Version 17 and XLSTAT 2015
were used for time series model development
in this stage. ACF and PACF were used to
statistically measure if earlier values in the series
have some relation to later values. By looking at
the ACF and PACF plots of the differenced series,
we could tentatively identify the numbers of AR
and/or MA terms that were needed.

The model gives the minimum (AICC) and
(SBC) which is selected as the best-fit model
(Mishra and Desai, 2005; Duru, 2010). The
mathematical formulation for the AICC and SBC
(Schwarz 1978) was developed as following (Egs.
6and 7):

B » + 2(p+a+P+Q+1)N 6
A|CC(p,q,P,Q)_N.|n(a(C))+(N_p_q_P_Q_Z) (6)
SBC = —2log(L) + (p + q + P + +Q)In(N) (0

Where N denotes the number of observations, L
denotes the likelihood function of the ARIMA
models and it is a monotonically decreasing
function of the sum of squared residuals.

SBC is usually a better criterion than AIC
when the number of samples is low. AICC is the
revised version of AIC and acts well even by low
number of samples (Mishra and Desai, 2005;
Alam 2014).

After the identification of model using the
AICC and SBC criteria estimation of parameters
is done with Minitab 17 software. After
identification of the model and estimation of the
parameters, diagnostic test is applied to the fitted
model to verify the adequacy of the model.
Several tests are employed for diagnostic test that
consists of: Portmanteau lack-of-fit test, Normal
probability plot of residuals and Kolmogorov—
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Smirnov statistics of residuals and White noise
ACF and PACF of residuals.

2.3.1 Portmanteau lack-of-fit test to check
the independence of residuals.

Portmanteau lack-of-fit test was modified to
Ljung-Box-Pierce statistics proposed by Ljung
and Box (1978) employed to check the
independence of residuals. In order to test the null
hypothesis that a current set of autocorrelations is
white noise, test statistics are calculated for
different total numbers of successive lagged
autocorrelations using the Ljung-Box-Pierce
corrected statistics (Q*r test) to test the adequacy
of the model. The Q*r statistic is formulated as
follows Eq. 8: (Duru, 2010; Lee and Ko, 2011).

L 5 (e)

Q' =n(n+2) 3L, 5L

8

Where L is the total number of lagged
autocorrelations under investigation, r¢ is the
sample, and autocorrelation of the residuals at lag
k. Q* values are compared with the value of ¥?
distribution with a degree of freedom and a
significant level of 95%, N is total observation.

2.3.2 Normal probability plot of residuals
and Kolmogorov-Smirnov statistics of
residuals

Kolmogorov-Smirnov test (K-S test) was used to

test the normality of residuals from different sets

of models of the fit of data. (Eq. 9):

D=max‘F(x)—|f(x)‘ )
Where D is the maximum deviation, F(x) the
completely specified theoretical cumulative
distribution function under the null hypothesis,
If(X) is the sample cumulative density function

based on n observations. For a chosen
significance level a, for D greater than the critical
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value Dy, the null hypothesis related to normality
is rejected for the chosen level of significance.

Also, basic statistical properties are compared
between observed and forecasted data for 6 month
and 2 seasons lead-time, using Z-test for the
means and F-test for standard deviation (Haan,
1977).

The Z test was used to compare the average of
the observed and forecasted values. If we select n
random samples of normal community with a p
average and a o standard deviation, the X average
will be distributed normally with a |1 average and

airl standard deviation. Therefore, the Z value

=
was acquired by relation 10 (Eq. 10):
(Montgomery, 2009).

X—u
L=—7 (10)

O,

7
For Z amounts less than 1.96, null hypothesis
based on the equality of the forecasted and
observed values is accepted.

The F test was used to compare the variance of
forecasted values with the variance of the
observed values. With n; samples of the first
community and n, samples of the second
community with variances s,° and s,” respectively,
the F distribution with k; and k, degree of
freedom is acquired by Eq. 11: if the values of
computational F be less than the F of the table in
5% error level, null hypothesis based on the
equality of the variances of the forecasted and
observed values will be accepted (Eg. 11):
(Montgomery, 2009).
Sl2
xat (11)

233 White noise ACF and PACF of
residuals

For a good forecasting model, the residuals, left

over after fitting the model, must satisfy the
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requirements of a white noise process. There are
two useful applications related to PACF for the
independence of residuals. The first is the
correlogram drawn by plotting r, against lag k,
where ry is the residual ACF function (Lee and
Ko, 2011).

2.34  Model validation

Following tests were used to evaluate the
accuracy of the forecasted standardized stream
flow:

- Correlation between observed and forecasted
time series (Eq. 12). The coefficient of correlation
R was selected as the degree of collinearity
criterion of level prediction (Wang 2015).

- The root mean square error for forecasted
standardized stream flow (Eq. 13). (Roughani et
al., 2007; Shalamu et al., 2011; Liu and Hwang,
2015)

-The mean absolute error (Eq. 14) (Mishra and
Desai , 2006)

Each of the error coefficients provided special
and unique information that the other coefficient
don’t provide them. RMSE showed the errors
more than 1 as the overestimation and the errors
less than 1 as the underestimation that this
characteristic was so suitable to examine the
terminal errors, namely the values of errors which
were distributed at the two ends of the error
distribution.  Although, MAE  coefficient
considered the average of the real values of the
error, it ignored the direction of the error
variations (Makridakis et al. 2003). Therefore,
those two mentioned indices at the above were
used in this research to determine the error of the
model in two seasonal and annual scales (Egs. 12
to 14):

T (X0 (D-X0) (X (D)%)

R =
EEL oK) (2Nt (0-% )2

(12)

RMSE = LT (6® - Xo@)? (13
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_ SiLlxr-X0 ()|
- N

MAE (14)

Where X, (i) and X¢(i) were respectively, the
observed and forecasted SRI, X, and X; denoted

their means, and N was the number data points
considered.

3 RESULTS AND DISCUSSIONS
3.1 Hydrological drought properties based on
SRI

Based on the methodology of Shukla and Wood,
2008 and Nalbantis and Tsakiris, 2009, log
normal distribution was identified as the most
appropriate distribution to discharge data of the
hydrometric stations of Karkheh Basin. Figure 2
showed the SRI values in monthly and seasonal
scales. Based on this figure, there are

continuously wet and drought periods in the river
basin. So that, the extremely drought is related to
1982-83 and 1988-89 years with a magnitude of -
2.5 and duration of 3-month.

The regional time series of SRI value is
calculated using the discharge weighted average
over the Karkheh Basin. The time series of
monthly and seasonal hydrologic drought are
shown in Figure 2.

3.2 Stochastic model development

The data set from 1974 -1975 to 2011-2012
were used to develop the model (water years).
A split sample procedure was used for the
calibration and validation of the model. In each
of the monthly and seasonal database, the flow
data from 1974-75 to 1999-2000 were used for
calibration and the data from 2000-01 to 2012-
13 were used for the validation of the model.

Monthly

SRI
p—

1974-75
1982-83

1978-79
1986-87

Seasonally

1974-75
1980-81
1986-87

1992-93

1998-99
2005-06
2011-2012

Figure 2 SRI Monthly (Top) and seasonal (Bottom) time series based on the discharge weighted average over
the Karkheh Basin
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3.2.1 Identification

Identification of the general form model
involves two steps. First, the data series is
analyzed for stationary and normality. Second,
the temporal correlation structures of the
transformed data are identified by examining its
autocorrelation (ACF) and partial
autocorrelation (PACF) function (Ghanbarpour
et al., 2010).

The ACF and PACF were estimated for
monthly and seasonal SRI in the Visan
hydrometric station which has been shown in
Figure 3. The PACF showed that the series
were stationary. The ACF was damping out in
sine-wave manner with significant spikes at the
first five lags. The first two values were

significant in PACF which indicated the
process could be modeled as a combination of
both AR and MA processes.

The identification of the best seasonal and
non-seasonal models for hydrological drought
in the different locations depends on the
minimum AICC and SBC criteria which were
presented in Table 3.

3.2.2 Estimation

After the identification of model using the
AICC and SBC criteria, estimation of
parameters is done. The summary of the
statistical parameters of the best fitted models
under the study have been given in Table 4.

Monthly

ACF
©° ocooo

o Rowm=

0 5 10 15 20 25 30 35 40 45 50 55 60
Lag Time (Month)

—0-4 T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60
Lag Time (Season)

PACF

0 5 10 15 20 25 30 35 40 45 50 55 60
Lag Time (Month)

PACF

S55S soee
I et Ok b N

T } T } T } T } T } T }
0 5 10 15 20 25 30 35 40 45 50 55 60
Lag Time (Season)

Figure 3 ACF (Top) and PACF (Bottom) plots used for stochastic monthly and seasonal series at Visan
hydrometric station
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S::a:;c;n Model (Monthly) AICC SBC Model (Seasonal) AICC SBC
ARIMA (2,1,1)(1,0,0);, 476.191  494.890 ARIMA (0,1,3)(0,0,2),  245.858  261.055
1 ARIMA (0,1,4)(0,0,3);, 478.339  508.102 ARIMA (0,1,3)(1,0,2),  247.813  265.391
ARIMA (2,1,1)(2,0,0);, 477.883  500.283 ARIMA (1,1,1)(0,0,2),  247.601  260.371
ARIMA (3,1,1)(2,0,1);, 426.036  463.074 ARIMA (1,1,1)(0,0,3), 247.605  262.737
2 ARIMA (3,1,4)(2,0,1);,  428.234  428.234 ARIMA (0,1,2)(0,0,3);  247.823  262.955
ARIMA (3,1,3)(2,0,1);, 428.642 463235 ARIMA (1,1,1)(1,0,2),  248.697  263.829
ARIMA (1,1,2)(1,0,0);, 360.344 379.043 ARIMA (1,1,3)(1,0,0), 210.002  225.199
3 ARIMA (1,1,2)(2,0,0);,  362.159  384.559  ARIMA (0,1,3)(0,0,0) 213.367  223.666
ARIMA (1,1,4)(1,0,0),  363.110  389.198  ARIMA (013)(100), 214.023  226.793
ARIMA (1,1,1)(1,0,2);,  495.018 517.418  ARIMA (111)(100)4 244.060  254.359
4 ARIMA (1,1,3)(1,0,2);,  495.018 517.418  ARIMA (111)(001)4  244.063  254.401
ARIMA (1,1,3)(1,0,0),  499.541 514526  ARIMA (013)(001)4 244532  257.302
ARIMA (1,1,2)(0,0,1);, 508.969  527.668 ARIMA (1,0,0)(0,0,0)  267.339  272.589
5 ARIMA (1,1,2)(1,0,0), 508.296  526.995 ARIMA (1,1,1)(1,1,1), 269.933  277.719
ARIMA (2,1,1)(1,0,0);, 508.415 527.114 ARIMA (0,1,3)(1,0,2), 270.392  287.970
ARIMA (1,1,1)(0,0,1);, 574.012 588.997 ARIMA (0,1,2)(1,0,1); 270.350  283.120
6 ARIMA (1,1,1)(1,0,0),  574.107 589.092 ARIMA (0,1,3)(1,0,1),  272.092  287.289
ARIMA (1,1,2)(1,0,0);, 574.890 593589 ARIMA (1,1,1)(1,0,1), 272.087  284.857
ARIMA (1,0,0)(0,1,2);,  600.543  615.385 ARIMA(1,1,1)(0,0,1);  280.628  290.928
7 ARIMA (1,0,0)(1,1,1);, 600599 615441  ARIMA (1,1,1)(1,00), 280.726  290.95
ARIMA (1,0,1)(0,1,2);,  602.167  620.686 ARIMA (1,1,2)(0,0,1);  282.386  295.156
ARIMA (1,1,2)(1,0,3);,  493.967 523.730 ARIMA(0,1,2)(0,0,3);  269.916  285.113
8 ARIMA (1,1,2)(1,04);, 494108 527.532 ARIMA (0,1,3)(1,0,1), 271.486  286.683
ARIMA (1,1,2)(2,0,3);,  496.248  529.672 ARIMA (0,1,3)(1,0,2),  271.915  289.494
ARIMA(1,0,2) (0,0,0) 518184 533.181 ARIMA(1,1,1)(0,0,2),  255.657  268.427
9 ARIMA(2,1,2)(1,0,0);,  519.671  542.071 ARIMA (1,1,1)(1,0,2),  256.819  272.016
ARIMA(1,0,3) (0,0,0)  520.804 539.519 ARIMA (0,1,2)(1,0,2), 257.694  272.891
ARIMA (3,0,0) (0,0,0) 679517 694515 ARIMA (1,1,1)(1,0,2), 289.539  304.736
10 ARIMA (3,0,1) (0,0,0) 682568 701.283 ARIMA (1,1,2)(2,0,0), 294.837  310.034
ARIMA (3,0,2) (0,0,0)  684.975 707.395 ARIMA (1,1,2)(1,0,0), 293.927  306.697
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Table 4 Summary of the statistical analysis of model parameters

Variables in the model

. Value of Standard .
Station Code Model (Monthly) parameter parameters error t-ratio P<0.05
o -0.8760 0.075 11,69 0
1 AR'('i"(')A‘O()zl;l'l) b -0.0088 0.0583 015 088
'y 10.1085 0.0575 189 006
01 10,9251 0.0498 118.58 0
b1 0.2982 0.1994 15 0136
, -0.2902 0.1797 161 0107
, 0.3918 0.1288 304 0003
0, 0.7142 0.3607 198 0.049
2 ARIMA (3,1,3) 0, 0.0204 0.0895 023 082
(20,11
0 0.2564 0.1894 135 0177
®, -0.0052 0.1617 003 0974
, 0.598 0.1184 5.05 0
) -0.8104 0.3588 226 0.025
b 0.8083 0.0398 20.28 0
01 0.1834 0.0578 317 0.002
3 ARIMA (1.1,2) 0, 0.7803 0.0016 498.05 0
(1,0,0)12
'y 0.2074 0.0181 11.48 0
b 0.7695 0.0434 17.74 0
O, 0.638 0.1618 3.94 0
4 ARIMA (1,1.1) 01 0.9504 0.0213 44.68 0
(1,0,2)1
0, 0.6815 0.1685 4.05 0
0, 0.1382 0.0739 187  0.062
b 0.7693 0.0411 18.73 0
01 0.7659 0.0002 468955 0
5 AR'(g"(')“l()lél'Z) 0, 0.2232 0.0159 14.02 0
V4 /1
0, 0.077 0.0576 134 0183
b 0.7387 0.038 19.46 0
6 AR'('S"(')“l()lllll) 01 0.9665 0.0065 147.6 0
1Yy L )12
0, 0.0564 0.0564 1 0.319
b1 0.7467 0.0337 22.16 0
7 AR'('(\)"fz()llolo) 01 0.7008 0.0515 13.61 0
144 )12
02 0.0401 0.0529 0.76  0.449
b1 0.7467 0.0337 2216 0
01 0.7008 0.0515 13.61 0
8 AR'('1”6°‘3()1'1'2) 02 0.0401 0.0529 076 0.449
1Vy9 )12
ol 0.7467 0.0337 22.16 0
02 0.7008 0.0515 1361 0
®3 0.0401 0.0529 076  0.449
1 0.8469 0.0479 17.69 0
9 ARIMA (1,0,2) 01 -0.1091 0.0767 142 0.156
0, 0.201 0.0723 278 0.006
b 0.8162 0.0548 14.89 0
10 ARIMA (3,0,0) b -0.2601 0.0698 3,72 0
s 0.1995 0.0548 3.64 0
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3.2.3 Diagnostic test

Results of the normal probability (K-S test) of
residuals and Portmanteau lack-of-fit test in
monthly and seasonal scales in study stations
have been presented in Table 5. Portmanteau
test showed that the calculated value was less
than the actual xz value, which signified that the
present models were adequate on the available
data. K-S test showed that for all models the
Dy was less than Dy, at 5% significant level
and satisfied that the residuals were normally
distributed.

In order to determine whether the residuals of
the selected models from the AFC and PACF
graphs were independent several tests for
diagnostic checks were used. The ACF and
PACF of residuals for monthly and seasonal
SRI time series in the Visan hydrometric station
were demonstrated in Figure 4. Based on figure
4, ACF and PACF residuals in monthly and
seasonal time scales were located in confidence
range and the time independence test for
residuals was accepted.

Table 5 K-S test and Q, ¢t calculation of residuals for SRI series

Station SDI Model K-S Test Portmanteau Test
Code
Dtab Deal Q* df Xz

Monthly ARIMA

1 (2,1,1)(1,0,0)12 0.109 0.067 34.18 29 42.56
seasonal ARIMA (0,1,3)(0,0,2)4 0.095 0.072 5.63 6 59.12
Monthly ARIMA

2 (3,1,3)(2,0,1)12 0.109 0.064 22.08 23 35.17
seasonal ARIMA (1,1,3)(0,0,3)4 0.095 0.209 23.4 6 59.12
Monthly ARIMA

3 (1,1,2)(1,0,0)12 0.109 0.043 26.04 29 42.56
seasonal ARIMA (1,1,3)(1,0,0)4 0.095 0.058 12.56 6 59.12
Monthly ARIMA

4 (1,1,1)(1,0,2)12 0.109 0.040 26.56 28 34.41
seasonal ARIMA (1,1,1)(1,0,0)4 0.095 0.084 8.9 7 14.07
Monthly ARIMA

5 (1,1,2)(0,0,1)12 0.109 0.051 20.61 29 42.56
seasonal ARIMA (1,0,0)(0,0,0) 0.095 0.063 11.86 10 18.31
Monthly ARIMA

6 (1,1,1)(0,0,1)12 0.109 0.081 29.34 30 43.77
seasonal ARIMA (0,1,2)(1,0,1)4 0.095 0.082 5.48 7 14.07
Monthly ARIMA

7 (1,0,0)(0,1,2)12 0.109 0.039 29.34 30 43.77
seasonal ARIMA (1,1,1)(0,0,1)4 0.095 0.073 1.40 9 16.92
Monthly ARIMA

8 (1,1,2)(1,0,3)12 0.109 0.067 26.27 26 38.89
seasonal ARIMA (0,1,2)(0,0,3)4 0.095 0.083 0.07 6 59.12

9 Monthly ARIMA (1,0,2) 0.109 0.071 34 30 43.77
seasonal ARIMA (1,1,1)(0,0,2)4 0.095 0.059 74.92 7 14.07

10 Monthly AR (3,0,0) 0.109 0.060 16.22 28 34.41
seasonal ARIMA (1,1,1)(1,0,2)4 0.095 0.092 12.13 7 14.07
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3.3 Monthly and seasonal hydrologic
drought forecasting

The forecast was done for monthly and seasonal

one lead-time using the best models from

hydrometric data. The plot between observed

data and predicted data using the selected best
model for all SRI time series is shown in Figure
5.

Lag Time
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Figure 4 Diagnostic test of the best-fitted ARIMA model for Visan hydrometric station SRI time series
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Figure 5 Comparison of observed data with forecasted data using best ARIMA models (in Visan hydrometric station)
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Performance analysis of forecasting models
consist of R, RMSE and MAE was represented
in Table 6. Results showed that with a longer
lead-time, the coefficient of correlation
decreased and error coefficient increased
between observed and predicted data. Therefore
the selected best models from ARIMA building
approach using a time series data of SRI can be
used for the drought forecasting.

The Z test and F test computed for comparison
of mean and variance, from each model were
presented in Table 7. Result showed that there

was no significant difference between the mean
and variance values of observed and predicted
data. Since calculated Z values (Z) related to
means were between Z. table values (+1.96 for
two-tailed at a 5% significance level), the Z.
values indicate that there was no significant
difference between the mean values of observed
and predicted data. Similarly, the F. values of
standard deviation were smaller than the Fgisca
values at a 5% significance level. Thus, the results
showed that predicted data preserved the basic
statistical properties of the observed series.

Table 6 Coefficient of correlation and error between observed and predicted data for different lead-time

Monthly Seasonal
Séaot(';;” Lag Time 1 2 3 4 5 6 1 2

R 0.766*  0.502*  0.340* 0.312 0.12 0.12 0.364* 0.086

1 RMSE 0.503 0.533 0.690 0.736 0.781 1.00 0.644 0.731
MAE 0.43 0.54 0.609 0.719 0.78 0.761 0.482 0.622

R 0.79* 0.652* 0.569*  0.349* 296* 0.276* 0.277 0.132

2 RMSE 0.502 0.754 0.802 0.819 0.9 0.690 0.74 0.776
MAE 0.399 0.569 0.59 0.604 0.801 0.860 0.562 0.608

R 0.701* 0.606* 0.598* 0.541* 0.369* 0.209* 0.684* 0.302

3 RMSE 0.56 0.68 0.698 0.742 0.801 0.9 0.620 0.838
MAE 0.412 0.467 0.509 0.612 0.743 0.744 0.493 0.676

R 0.77* 0.657*  0.340* 0.21 0.129 0.112 0.357* 0.135

4 RMSE 0.509 0.619 0.698 0.788 0.802 0.823 0.707 0.739
MAE 0.392 0.425 0.512 0.589 0.612 0.65 0.539 0.589

R 0.743* 0.501* 0.478* 0.405* 0.301* 0.287* 0.372* 0.164

5 RMSE 0.75 1.29 1.45 1.76 1.89 1.99 0.759 0.788
MAE 0.585 0.964 0.998 1.23 1.43 1.7 0.641 0.613

R 0.720* 0.563* 0.459* 0.348* 0.304* 0.298* 0.223 0.286

6 RMSE 0.604 0.871 0.9 1.07 1.11 1.35 0.628 0.599
MAE 0.359 0.645 0.98 1.00 1.05 1.19 0.526 0.523

R 0.55* 0.412* 0.387* 0.345* 0.319* 0.3* 0.373* 0.147

7 RMSE 0.98 0.976 0.98 0.988 0.989 0.977 0.805 0.833
MAE 0.65 0.698 0.71 0.756 0.771 0.774 0.616 0.664

R 0.798*  0.445* 0.304* 0.137 0.175 0.159 0.324*  0.315*

8 RMSE 0.60 0.96 1.05 1.01 1.075 1.12 0.959 0.923
MAE 0.502 0.71 0.801 .871 .898 0.9 0.815 0.750

R 0.789*  0.448* 0.262* 0.17 -0.13 -0.1 0.397* -0.02

9 RMSE 0.504 0.723 0.743 0.904 0.90 0.96 0.908 0.981
MAE 0.3 0.61 0.54 0.598 0.67 0.78 0.676 0.699

R 0.634* 0.123 -0.21 -0.22 0.22 -0.123 -0.12 -0.194

10 RMSE 0.625 0.91 0.734 0.743 0.658 0.754 0.907 0.903
MAE 0.501 0.70 0.702 0.7 0.677 0.70 0.753 0.772
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Table 7 Comparison of statistic properties of the observed and predicted data

Station Code Variance

Variance

Mean Mean

SRI observed  forecasted Fear<Fran observed forecasted 2<1.9

1 Monthly 0.565 0.574 0.98<1.76 -0.70 -0.716 0.132
Seasonal 0.44 0.19 0.38<1.94 -0.710 -0.796 0.99

9 Monthly 0.76 0.645 0.1<1.76 -0.045 -0.515 0.245
Seasonal 0.567 0.180 0.308<1.94 -0.494 -0.492 0.16

3 Monthly 0.801 0.603 1.32<1.7 -0.834 -0.723 0.23
Seasonal 0.714 0.44 0.62<1.94 -0.868 -0.966 0.83

4 Monthly 0.513 0.414 V.23<1.7 -0.47 -0.71 0.81
Seasonal 0.533 0.239 0.44<1.94 -0.529 -0.558 1.45

5 Monthly 0.441 0.792 0.552<1.7 -0.314 0.1 0.91
Seasonal 0.346 0.44 0.42<1.94 -0.357 -0.229 1.2

6 Monthly 0.644 0.406 1.58<1.7 -0.534 -0.876 0.094

Seasonal 0.626 0.282 0.45<1.94 -0.647 -0.684 0.202

7 Monthly 1.1 0.9 1.2<1.7 -0.326 -0.337 0.074
Seasonal 0.7 0.17 0.24<1.94 -0.398 -0.419 0.44

8 Monthly 1.14 0.896 1.27<1.7 -0.402 -0.334 0.11
Seasonal 0.992 0.386 0.38<1.94 -0.410 -0.345 0.50

9 Monthly 0.8 0.548 1.4<1.7 0.71 0.41 0.78
Seasonal 0.778 0.51 0.74<1.94 -0.576 -0.651 0.36

10 Monthly 0.61 0.42 1.45<1.7 -0.286 -0.21 0.91
Seasonal 0.49 0.099 0.203<1.94 -0.324 -0.093 1.85

4 CONCLUSION

The aim of this research is the evaluation of the
skill of linear and multiplicative ARIMA
models in forecasting the hydrologic drought in
monthly and seasonal time scales in Karkheh
Basin. In Dboth time scales, correlation
coefficient between observed and forecasted
values decreased with increasing the lead - time
and the value of error coefficients increase that
this was compatible with the results of Mishra
and Desai (2005 and 2006), Fathabadi et al.
(2009), and Hejabi et al. (2013). ARIMA
model, based on the previous time series
memory, forecasts the values linearly and uses
the previous forecast lead-time to forecast the
next lead-time, therefore, the values of
forecasting error increase cumulatively with
increasing the lead-time and the values of
correlation coefficient decreased.
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Results of the ARIMA model in terms of the
skill in the lead-time of forecast show that the
model was able to predict the two months and
one season of lead-time with a high accuracy
that this was in agreement with the results of
Abudu et al. (2010), Han et al. (2010),
Lorenzo-Lacruz et al. (2012), Hejabi et al.
(2013) and Alam et al. (2014).

Comparison of the results of ARIMA model
in seasonal and monthly time scales showed
that the ability of the model to forecast the
drought in seasonal time scale was less than its
ability in monthly time scale that its main cause
was the low amount of data in seasonal time
scale relative to the amount of data in monthly
time scale. These results were exactly similar to
the results of Ghanbarpour et al. (2010).

Time series models used in this research to
forecast the 6 lead-time ahead in monthly time
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scale and 2 lead-time ahead in seasonal time
scale showed that multiplicative ARIMA model
was able to predict the hydrologic drought with
a high accuracy to at least the 3 lead-time.
Therefore, if the forecasting was done in short
term lead-time this model can be used to
develop the programs combating with drought
and sustainable management of water resources
in the other watershed basins with similar
hydro-climatic condition. Finally, use of the
other  forecasting tools like  Wavelet
Transforms, Artificial Neural Network (ANN),
Support Vector Machine (SVM), and the other
predictors such as climatic signals was
suggested to forecast the hydrologic drought in
medium and long term time scales.

5 REFERENCES

Abudu, S., Cue, C.L. King, JP. and
Abudukadeer, K. Comparison  of
performance of statistical models in

forecasting monthly streamflow of Kizil
River, China. Water. Sci. Eng., 2010;
3(3): 269-281.

Akaike, H. A new look at the statistical model
identification. IEEE. Trans. Auto. Cont.,
1987; 19(6): 716-723.

Alam, N.M., Mishra, P.K. Jana, C. and
Adhikary, P.P. Stochastic model for
drought forecasting for Bundelkhand
region in Central India. Indian. J. Agri.
Sci., 2014; 84 (1): 79-84.

Alley, W. M., The Palmer Drought Severity
Index: limitations and assumptions. J.
Clim. Appl. Meteorol., 1984; 23: 1100-

11009.

American Meteorological Society.
Meteorological  drought —  policy
statement. Bull. Am. Meteorol. Soc.,

1997; 78: 847-849.

1114

Azarakhshi, M., Mahdavi, M. Arzani, H. and
Ahmadi, H. Assessment of the Palmer
drought severity index in arid and semi-
arid rangeland: (Case study: Qom
province, Iran). Desert. 2013; 16: 77-85.

Bazrafshan, J. and Khalili, A. Spatial Analysis
of Meteorological Drought in Iran from
1965 to 2003. DESERT. 2013; 18: 63-71.

Bazrafshan, J., Hejabi, S. and Habibi
Nokhandan, M. Is the SPI sufficient for
monitoring meteorological droughts in
extreme costal climates of Iran? Adv.
Nat. Appl. Sci. 2010; 4(3): 345-351.

Ben-Zvi, A. Indices of hydrological drought in
Israel. J Hydrol. 1987; 92: 179-191.

Box, GEP. and Jenkins, GM. Time series
analysis forecasting and control. Holden -
Day, San Francisco Press, San Francisco,
USA. 1976; 567 P.

O.F. A fuzzy integrated logical
forecasting model for dry bulk shipping
index forecasting: An improved fuzzy
time series approach. Expert. Sys. Appl.,
2010; 37: 5372-5380.

Fathabadi, A., Gholami, H. Salajeghe, A.
Azanivand, H. and Khosravi, H. Drought
Forecasting Using Neural Network and
Stochastic Models. Am. Eur. Net. Sci.
Info., 2009; 3(2): 137-146.

Fernandez, C., Vega, J.A. Fonturbel, T. and
Jimenez, E. Streamflow drought time
series forecasting: a case study in a small
watershed in North West Spain. Stoch.
Environ. Res. Risk. Assess. 2009; 23:
1063-1070.

Duru,

Garen, D.C. Revised surface-water supply index
for western United States. J. Water. Res.
Plan. Manage. 1993; 119(4): 437-454.

Ghanbarpour, M.R., Abbaspour, K.C. Jalalvand,
G. and Moghaddam, G.A. Stochastic



Hydrological drought forecasting using ARIMA

ECOPERSIA (2015) Vol. 3(3)

modeling of surface stream flow at
different time scales: Sangsoorakh Kkarst
basin, Iran.J. of Cave and Karst
Studies, 2010; 72(1):1-10.

Haan, C.T. Statistical methods in hydrology. lowa
State Press lowa, USA. 1977; 345 P.

Han, P., Wang, P.X. Zhang, S.Y. and Zhu, D.H.
Drought forecasting based on the remote
sensing data using ARIMA models.
Math. Comput. Model. 2010; 52: 1398-
1403.

Hayes, MJ., Svoboda, MD., Wilhite, DA. and
Vanyarkho, OV. Monitoring the 1996
drought  using the  standardized
precipitation index. Bull. Am. Meterol.
Soc., 1999; 80: 429-438.

Hejabi, S. Bazrafshan, J. and Ghahraman, N.
Comparison of stochastic and artificial
neural networks models in modeling and
forecasting the standardized precipitation
index values and classes. Phys. Geogr.
Res. 2013; 45(2): 92-112.

Hosseinzadeh Talaee, P., Tabari, H. and
Ardakani, S. Hydrological drought in the
west of Iran and possible association with
Large-scale  atmospheric  circulation
pattern. Hydrol. process. 2014; 28: 764-
773.

Jalalkamali, A., Moradi, M. and Moradi, N.
Application  of  several artificial
intelligence models and ARIMAX model
for forecasting drought wusing the
Standardized Precipitation Index. Int. J.
Environ. Sci. Tech., 2015; 12: 1201-
1210.

Karimi, M., and Shahedi, K. Hydrological
drought analysis of Karkheh River basin
in Iran using variable threshold level
method. Curr. World. Environ. J., 2013;
8 (3): 419-428.

1115

Karl, T.R. and Knight, RW. Atlas of monthly
Palmer Drought Severity Indices for the
continuous  United States. Historical
Climatology Series 3-10 (1895-1930) and
3-11 (1931-1983). National Climatic Data
Center, Asheville, USA, 1985; 39-41.

T.R. The sensitivity of the Palmer
Drought Severity Index and Palmer's Z-
index to their calibration coefficients
including potential evapotranspiration. J.
Clim. Appl. Meteor., 1986; 25: 77-86.

Karl,

Lee, C., and Ko, C. Short-term load forecasting

using lifting scheme and ARIMA
models. Expert. Syst. Appl. J., 2011; 38:
5902-5911.

Liu, Y., and Hwang Y. Improving drought
predictability in Arkansas using the

ensemble PDSI forecast technique.
Stoch. Environ. Res. Risk. Assess., 2015;
1: 79-91.

Ljung, G.M., and Box, G.E. On a measure of
lack of fit in time  series
models. Biometrika. 1978; 65(2): 297-
303.

Lorenzo-Lacruz, J., Moran-Tejeda, E. Vicente-
Serrano, S.M. and Lopez-Moreno, J.l.
Streamflow droughts in the Iberian
Peninsula between 1945 and 2005:
spatial and temporal patterns. Hydrol.
Earth Syst. Sci., 2012; 17: 119-134.

Makridakis, S., Wheelwright, S.C. and
Hyndman, R. Forecasting Methods and
Applications, John Wiley and Sons
(ASIA) Press, Singapore. 2003; 656 P.

Mandelbrot, B. and Van Ness, J.W. Fractional
Brownian motions, fractional noises and
applications. SIAM Rev. 1968; 10(4):
422-437.

McKee, T.B., Doesken, N.J. and Kleist, J.
Drought monitoring with multiple time



O. Bazrafshan et al.

ECOPERSIA (2015) Vol. 3(3)

scales. Ninth Conference on Applied
Climatology, American Meteorological
Society, Dallas TX, USA, 1995; 675-687.

McKee, TB., Doesen, N.J. and Kleist, J. The
relationship of drought frequency and
duration to time scales. Preprints, 8th
Conference on Applied Climatology,
California, USA, 1993; 234-245 P.

Mendicino, G., Alfonso, S. and Pasquale, V. A
Groundwater Resource Index (GRI) for
drought monitoring and forecasting in a
Mediterranean climate. J. Hydrol., 2008;
282-302.

Mishra, A.K. and Desai, V.R. Drought
forecasting using feed-forward recursive
neural network. J. Eco. Model., 2006; 19:
127-138.

Mishra, AK., and Desai, VR. Drought
forecasting using stochastic models.
Stoch. Environ. Res. Risk. Assess., 2005;
19: 326-339.

Modarres, R. Streamflow drought time series
forecasting. Stoch. Environ. Res. Risk.
Assess. 2006; 21: 223-233.

Montgomery, D.C., Runger, G.C. and Hubele,
N.F. Engineering statistics. John Wiley and
Sons Press, Arizona, USA. 2009; 512 P.

Morid, S., Smakhtin, and Moghaddasi, V.M.
Comparison of seven meteorological
indices for drought monitoring in Iran.
Int. J. Clim., 2006; 26; 971-985.

Nalbantis, N. and Tsakiris, G. Assessment off
hydrological drought revisited. J. Water.
Res. Manag., 2009; 23: 883-897.

Rodriguez-Iturbe, 1., Vanmarcke, EH. and
Schaake, JC. Problems of Analytical
Methods in Hydrologic Data Collections.
Proceedings, Symposium on
Uncertainties in Hydrologic and Water

1116

Resources Systems, Tucson, Arizona,
1972; 433-460 P.

Roughani, M., Ghafouri, M. and Tabatabaei, M.
An innovative methodology for the
prioritization of sub-catchments for flood
control. Interna. J. Appl. Earth. Observ.
and Geoinform. 2007; 9: 79-87.

Salas, J.D., J. Delleur, W. Yevjevich, V. and

Lane, W.L. Applied modeling of
hydrological ~ time  series, = Water
Resources Publication, Chicago, USA.
1988; 483 P.

Schwartz, G. Estimating the dimension of a
model. Annals. Stat. 1978; 6: 461-464.

Shafer, B.A. and Dezman, LE. Development of
a Surface Water Supply Index (SWSI) to
assess the severity of drought conditions
in snowpack runoff areas. Proceedings of
the Western Snow Conference, Reno,
Nevada, USA, 1982; 233-345 P.

Shalamu, A., Chun-Liang, C. James, and
Kaiser, K.A. Comparison of performance
of statistical models in forecasting
monthly stream flow of Kizil River,
China. Water. Sci. and Eng., 2010; 3(3):

269-281.

Shukla, S. and Wood, AW. Use of a
standardized runoff index for
characterizing  hydrologic  drought.

Geophys. Res. Lett., 2008; 35: 1-7.

Tabari, H., Nikbakht, J. and Hoseinzadeh
Talaee, P. Hydrological drought
assessment in northwesterniran based on
streamflow drought index (SDI). Water.
Res. Manag. 2013; 27: 137-151.

Tsakiris, G. and Vangelis, H. Establishing a
drought index incorporating
evapotranspiration. Eur. Water. 2005; 9-
10: 1-9.



Hydrological drought forecasting using ARIMA ECOPERSIA (2015) Vol. 3(3)

Wang, W. Stochasticity, Nonlinearity and Wang, W.C., Chau, KW. Xu, D.M. and Che,

forecasting of streamflow processes. 10S X.Y. Improving forecasting accuracy of
Press, Amsterdam, Netherland. 2006; 234 annual runoff time series using arima based
P. on eemd decomposition. Water Res.

Manage., 2015; 29: 2655-2675.

Lo )T sl Joro 31 ooliciusl b (S 599y JLnSias: S

(4555 33l 0392 153 )90 axlllao)

S ozl daml 5 (g dezme ¢ Lidl,dy Slgx o aimde e *Ledhdy e dlgl

Ol el iy (8 00 olKtils ¢ oxele il 5 (55)5LAS 0uSLils g lo5e30l 5 2550 09,8 ) Lslinl -

Sl S 5 olSils ¢ ms gulin 00Siils o SlinsS 5 St 3blie Lol og,5 woliul Y

Ol @S ol olRsils ¢ (555Las asdls ( Sk 5 (6 )lal (saiige 09,5 ¢jlotils Y

Sl S 5 oo ¢ nels qulio 0uSiiils  SlidsS 5 St 3blie sl g5 bl -

Ol el s ozl 5 S cbiliz aaSinghy (b @lie 5 65,5lS JLSis Sy e 05,8 kil -0

WAE LT YA Ol 2o 5/ VYA LTYY c oy 2o 6/ VYAE 51 wcdl o 5o

PP (o5 St S oS e Bola 5 s (Bolal laoe oLl (s sy Gl GReo 5l Sos eunSs
5 alale olej sloobiie yo SRI doloms yal cpl sl ol 0351 455 55T 055 o (SRI) o o Jasiasl >
SRI Sy slos o (g5l o g o plox Vo AY-Y Y B VAYF-VAVD 5,90 (b (5509 000 o] 00 jo o Lad
SRI yolie )5 alowl b Luliiio o sl 4y ol 50 b 5 wlabe Lulidio o sl 4y pl8 Lot b Ky s 6l
Gy (FAY=Y AT B Yeooa¥eud) ile 5 oo drwgi sl VAA8-Teee B VAVE-VAVD 5,50 4 bogsye
SRI sals (st 5 00 odalin polie duslie o rwdons dl> o ;0 .8 8 8 soliiwl 0,50 Jou (oriwioxs
Sl Jae cds Cugdgl ol 4o . pdy Oyso golel slaggesl 5 Uas adlis o Kwced oo ) olaial b
oS by las el sty bl o nd JLSiS oy Sloy wlide § ol Sloj @8 ez elEas
A iz sl 009y Vb any Juad S g ol 90 o iay lad g alale Gl eldie j0 Jae (disiey B0
MAE 5 RMSE Sl b i) lole slog oliie 5 S yo olas Jow SRI polie i iy 5 g

Sloj 6y sla e o ol sla s ey oy s Juilis] el o JLSis pels ( JSis 55 sgoulS Glals

1117



