1. Radbruch-Hall DH, Varnes DJ. Landslides-cause and effect. Bull Int Assoc Eng Geol. 1976;13(1):205-16. [
Link] [
DOI:10.1007/BF02634797]
2. Van Westen CJ, Van Asch TW, Soeters R. Landslide hazard and risk zonation-why is it still so difficult?. Bull Engi Geol Environt. 2006;65(2):167-84. [
Link] [
DOI:10.1007/s10064-005-0023-0]
3. Brenning A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat Hazards Earth Syst Sci, Copernic Publ Eur Geosci :union:. 2005;5(6):853-62. [
Link] [
DOI:10.5194/nhess-5-853-2005]
4. Yao X, Tham LG, Dai FC. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology. 2008;101(4):572-82. [
Link] [
DOI:10.1016/j.geomorph.2008.02.011]
5. Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci. 2013;122(2):349-69. [
Link] [
DOI:10.1007/s12040-013-0282-2]
6. Jebur MN, Pradhan B, Tehrany MS. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J Sel Top Appl Earth Obse Remote Sens. 2014;8(2):674-90. [
Link] [
DOI:10.1109/JSTARS.2014.2341276]
7. Ren F, Wu X, Zhang K, Niu R. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China. Environ Earth Sci. 2015;73(8):4791-804. [
Link] [
DOI:10.1007/s12665-014-3764-x]
8. Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 2016;13(2):361-78. [
Link] [
DOI:10.1007/s10346-015-0557-6]
9. Huang Y, Zhao L. Review on landslide susceptibility mapping using support vector machines. CATENA. 2018;165:520-9. [
Link] [
DOI:10.1016/j.catena.2018.03.003]
10. Mohammady M, Pourghasemi HR, Amiri M. Assessment of land subsidence susceptibility in Semnan plain (Iran): A comparison of support vector machine and weights of evidence data mining algorithms. Nat Hazards. 2019;99(2):951-71. [
Link] [
DOI:10.1007/s11069-019-03785-z]
11. Prasad AM, Iverson LR, Liaw A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems. 2006;9(2):181-99. [
Link] [
DOI:10.1007/s10021-005-0054-1]
12. Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC Bioinform. 2008;9(1):307. [
Link] [
DOI:10.1186/1471-2105-9-307]
13. Bachmair S, Weiler M. Hillslope characteristics as controls of subsurface flow variability. Hydrol Earth Syst Sci. 2012;16(10):3699. [
Link] [
DOI:10.5194/hess-16-3699-2012]
14. Vorpahl P, Elsenbeer H, Märker M, Schröder B. How can statistical models help to determine driving factors of landslides?. Ecol Model. 2012;239:27-39. [
Link] [
DOI:10.1016/j.ecolmodel.2011.12.007]
15. Catani F, Lagomarsino D, Segoni S, Tofani V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 2013;13(11):2815-31. [
Link] [
DOI:10.5194/nhess-13-2815-2013]
16. Pourghasemi HR, Kerle N. Random forests and evidential belief function-based landslide susceptibility assessment in western Mazandaran Province, Iran. Environ Earth Sci. 2016;75(3):185. [
Link] [
DOI:10.1007/s12665-015-4950-1]
17. Naghibi SA, Pourghasemi HR, Dixon B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 2016;188(1):44. [
Link] [
DOI:10.1007/s10661-015-5049-6]
18. Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol Indic. 2016;64:72-84. [
Link] [
DOI:10.1016/j.ecolind.2015.12.030]
19. Golkarian A, Naghibi SA, Kalantar B, Pradhan B. Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess. 2018;190(3):149. [
Link] [
DOI:10.1007/s10661-018-6507-8]
20. Mohammady M, Pourghasemi HR, Amiri M. Land subsidence susceptibility assessment using random forest machine learning algorithm. Environ Earth Sci. 2019;78(16):503. [
Link] [
DOI:10.1007/s12665-019-8518-3]
21. Zarei P, Talebi A, Alaie Taleghani M. Sensitivity analysis of effective factors in hillslopes instability; a Case Study of Javanrud region, Kermanshah province. Ecopersia. 2018;6(4):259-68. [
Link]
22. Nafarzadegan AR, Talebi A, Malekinezhad H, Emami N. Antecedent rainfall thresholds for the triggering of deep-seated landslides (case study: Chaharmahal & Bakhtiari Province, Iran). Ecopersia. 2013;1(1):23-39. [
Link]
23. O'brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41(5):673-90. [
Link] [
DOI:10.1007/s11135-006-9018-6]
24. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. [
Link] [
DOI:10.1023/A:1010933404324]
25. Calle ML, Urrea V. Letter to the editor: Stability of random forest importance measures. Brief Bioinform. 2010; 12(1):86-9. [
Link] [
DOI:10.1093/bib/bbq011]
26. Nicodemus KK. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform. 2011;12(4):369-73. [
Link] [
DOI:10.1093/bib/bbr016]
27. Jakkula V. Tutorial on support vector machine (svm). Washington DC.; 2006. [
Link]
28. Joachims T. Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning, 1998 April 21-23, Chemnitz, Germany. Berlin: Springer; 1998. [
Link]
29. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci. 2000;97(1):262-7. [
Link] [
DOI:10.1073/pnas.97.1.262]
30. Cristianini N, Scholkopf B. Support vector machines and kernel methods: The new generation of learning machines. AI Magazine. 2002;23(3):31. [
Link]
31. Huang C, Davis LS, Townshend JR. An assessment of support vector machines for land cover classification. Int J Remote Sens. 2002;23(4):725-49. [
Link] [
DOI:10.1080/01431160110040323]
32. Guo Q, Kelly M, Graham CH. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol Model. 2005;182(1):75-90. [
Link] [
DOI:10.1016/j.ecolmodel.2004.07.012]
33. Statnikov A. A gentle introduction to support vector machines in biomedicine: Theory and methods. Singapore: World Scientific; 2011. [
Link] [
DOI:10.1142/7922]
34. Statnikov A, Aliferis CF, Hardin DP, Guyon I. A gentle introduction to support vector machines in biomedicine. Singapore: World Scientific Publishing Company; 2013. [
Link] [
DOI:10.1142/7923]
35. Kecman V. Support vector machines-an introduction. In: Support vector machines: theory and applications. Berlin: Springer; 2005. pp. 1-47 [
Link] [
DOI:10.1007/10984697_1]
36. Marjanović M, Kovačević M, Bajat B, Voženílek V. Landslide susceptibility assessment using SVM machine learning algorithm. Engi Geol. 2011;123(3):225-34. [
Link] [
DOI:10.1016/j.enggeo.2011.09.006]
37. Bonham-Carter GF, Agterberg FP, Wright DF. Integration of geological datasets for gold exploration in Nova Scotia. Photogramm Eng Remote Sens. 1988;54(11):1585-92. [
Link]
38. Van Westen CJ. Geo-information tools for landslide risk assessment: An overview of recent developments. Landslides Eval Stab. 2004;1:39-56. [
Link] [
DOI:10.1201/b16816-6]
39. Kornejady A, Ownegh M, Rahmati O, Bahremand A. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto Int. 2018;33(11):1155-85. [
Link] [
DOI:10.1080/10106049.2017.1334832]
40. Pontius Jr RG, Schneider LC. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ. 2001;85(1-3):239-48. [
Link] [
DOI:10.1016/S0167-8809(01)00187-6]
41. Kuhn M. The caret package. R Foundation for Statistical Computing [Internet]. Vienna; 2012 [cited 2019, June 20]. [
Link] [
DOI:10.5813/www.ieit-web.org/IJADC/2012.4.5]
42. Lombardo L, Cama M, Maerker M, Rotigliano E. A test of transferability for landslides susceptibility models under extreme climatic events: Application to the Messina 2009 disaster. Nat Hazards. 2014;74(3):1951-89. [
Link] [
DOI:10.1007/s11069-014-1285-2]
43. Lombardo L, Cama M, Conoscenti C, Märker M, Rotigliano EJ. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: Application to the 2009 storm event in Messina (Sicily, southern Italy). Nat Hazards. 2015;79(3):1621-48. [
Link] [
DOI:10.1007/s11069-015-1915-3]
44. Lombardo L, Fubelli G, Amato G, Bonasera M. Presence-only approach to assess landslide triggering-thickness susceptibility: A test for the Mili catchment (north-eastern Sicily, Italy). Nat Hazards. 2016;84(1):565-88. [
Link] [
DOI:10.1007/s11069-016-2443-5]
45. Hosmer DW, Lemeshow S. Applied logistic regression. New York: JohnWiley& Sons; 2000. [
Link] [
DOI:10.1002/0471722146]