1. Deng W, Wang G, Zhang X. A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting. Chemom Intell Lab Syst. 2015;149(Part A):39-49. [
Link] [
DOI:10.1016/j.chemolab.2015.09.017]
2. Bahar Gogani M, Douzbakhshan M, Shayesteh K, Ildoromi AR. New formulation of fuzzy comprehensive evaluation model in groundwater resources carrying capacity analysis. ECOPERSIA. 2018;6(2):79-89. [
Link]
3. Vafakhah M, Janizadeh S, Khosrobeigi Bozchaloei S. Application of several data-driven techniques for rainfall-runoff modeling. ECOPERSIA. 2014;2(1):455-69. [
Link]
4. Liong SY, Phoon KK, Pasha MF, Doan CD. Efficient implementation of inverse approach for forecasting hydrological time series using micro GA. J Hydroinform. 2005;7(3):151-63. [
Link] [
DOI:10.2166/hydro.2005.0013]
5. Bazrafshan O, Salajegheh A, Bazrafshan J, Mahdavi M, Fatehi Maraj A. Hydrological drought forecasting using ARIMA models (case study: Karkheh Basin). ECOPERSIA. 2015;3(3):1099-117. [
Link]
6. Wang WC, Chau KW, Xu DM, Chen XY. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour Manag. 2015;29(8):2655-75. [
Link] [
DOI:10.1007/s11269-015-0962-6]
7. Arya FK, Zhang L. Copula-based Markov process for forecasting and analyzing risk of water quality time series. J Hydrol Eng. 2017;22(6):04017005. [
Link] [
DOI:10.1061/(ASCE)HE.1943-5584.0001494]
8. Elkiran G, Nourani V, Abba SI. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol. 2019;577:123962. [
Link] [
DOI:10.1016/j.jhydrol.2019.123962]
9. Fabro AY, Ávila JG, Alberich MV, Sansores SA, Camargo-Valero MA. Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl Geogr. 2015;65:49-57. [
Link] [
DOI:10.1016/j.apgeog.2015.10.004]
10. Li L, Jiang P, Xu H, Lin G, Guo D, Wu H. Water quality prediction based on recurrent neural network and improved evidence theory: A case study of Qiantang River, China. Environ Sci Pollut Res. 2019;26(19):19879-96. [
Link] [
DOI:10.1007/s11356-019-05116-y]
11. Dottridge J, Jaber NA. Groundwater resources and quality in northeastern Jordan: Safe yield and sustainability. Appl Geogr. 1999;19(4):313-23. [
Link] [
DOI:10.1016/S0143-6228(99)00012-0]
12. Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, et al. Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol. 2005;313(3-4):182-94. [
Link] [
DOI:10.1016/j.jhydrol.2005.03.001]
13. Taneja K, Ahmad Sh, Ahmad K, Attri SD. Time series analysis of aerosol optical depth over New Delhi using Box-Jenkins ARIMA modeling approach. Atmos Pollut Res. 2016;7(4):585-96. [
Link] [
DOI:10.1016/j.apr.2016.02.004]
14. Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A. Application of several data-driven techniques for predicting groundwater level. Water Resour Manag. 2013;27(2):419-32. [
Link] [
DOI:10.1007/s11269-012-0194-y]
15. Mirzavand M, Ghazavi R. A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour Manag. 2015;29(4):1315-28. [
Link] [
DOI:10.1007/s11269-014-0875-9]
16. Faruk DÖ. A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell. 2010;23(4):586-94. [
Link] [
DOI:10.1016/j.engappai.2009.09.015]
17. Kumar S, Tiwari MK, Chatterjee Ch, Mishra A. Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis and bootstrap method. Water Resour Manag. 2015;29(13):4863-83. [
Link] [
DOI:10.1007/s11269-015-1095-7]
18. Kourentzes N, Barrow DK, Crone SF. Neural network ensemble operators for time series forecasting. Expert Syst Appl. 2014;41(9):4235-44. [
Link] [
DOI:10.1016/j.eswa.2013.12.011]
19. Haykin SS, Haykin SS, Haykin SS, Haykin SS. Neural networks and learning machines. 3rd Edition. Upper Saddle River: Prentice Hall; 2009. [
Link]
20. Athanasopoulos G, Hyndman RJ, Kourentzes N, Petropoulos F. Forecasting with temporal hierarchies. Eur J Oper Res. 2017;262(1):60-74. [
Link] [
DOI:10.1016/j.ejor.2017.02.046]
21. Stevens A, Nocita M, Tóth G, Montanarella L, Van Wesemael B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS One. 2013;8(6):e66409. [
Link] [
DOI:10.1371/journal.pone.0066409]
22. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecast. 2006;22(4):679-88. [
Link] [
DOI:10.1016/j.ijforecast.2006.03.001]
23. An T, Huang Y, Li G, He Z, Chen J, Zhang Ch. Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods. Environ Int. 2014;73:186-94. [
Link] [
DOI:10.1016/j.envint.2014.07.019]
24. Hounslow A. Water quality data: Analysis and interpretation. Boca Raton: CRC Press; 2018. [
Link] [
DOI:10.1201/9780203734117]
25. Zarasvandi A, Mirzaee S. Geochemistry of the Karkheh River sediments, Khuzestan Province, Iran: Evidences for natural contamination. Res J Appl Sci. 2009;4(1):35-40. [
Link]
26. Chitsazan M, Faryabi M, Zarrasvandi AR. Evaluation of river-aquifer interaction in the north part of Dezful-Andimeshk district, SW of Iran. Arab J Geosci. 2015;8(9):7177-89. [
Link] [
DOI:10.1007/s12517-014-1686-2]
27. Nasrabadi T, Nabi Bidhendi GR, Karbassi AR, Hoveidi H, Nasrabadi I, Pezeshk H, et al. Influence of Sungun copper mine on groundwater quality, NW Iran. Environ Geol. 2009;58(4):693-700. [
Link] [
DOI:10.1007/s00254-008-1543-2]
28. Chatfield Ch. The analysis of time series: an introduction. Boca Raton: CRC Press; 2016. [
Link]
29. Laio F, Di Baldassarre G, Montanari A. Model selection techniques for the frequency analysis of hydrological extremes. Water Resour Res. 2009;45(7):W07416. [
Link] [
DOI:10.1029/2007WR006666]
30. Kim S, Kim H. A new metric of absolute percentage error for intermittent demand forecasts. Int J Forecast. 2016;32(3):669-79. [
Link] [
DOI:10.1016/j.ijforecast.2015.12.003]
31. Makridakis S, Wheelwright SC, Hyndman RJ. Forecasting methods and applications. Hoboken: John Wiley & Sons; 2008. [
Link]
32. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929-58. [
Link]