Adamowski, J. and Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol., 2011; 407 (1): 28-40.
Anctil, F., Perrin, C. and Andreassian, V. ANN output updating of lumped conceptual rainfall/runoff forecasting models1. JAWRA J. Am. Water Resur. Assoc., 2003; 39 (5): 1269-1279.
Anctil, F. and Tape, D.G. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci., 2004; 3 (S1): S121-S128.
Anmala, J., Zhang, B. and Govindaraju, R.S. Comparison of ANNs and empirical approaches for predicting watershed runoff. J. Water Res. Pl. Manage., 2000; 126 (3): 156-166.
Aqil, M., Kita, I., Yano, A. and Nishiyama, S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol., 2007; 337 (1): 22-34.
Asadi, S., Shahrabi, J., Abbaszadeh, P. and Tabanmehr, S. A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing., 2013; 121: 470-480.
Aussem, A., Murtagh, F. and Clermont-ferr, B.P. A neuro-wavelet strategy for web traffic forecasting. J. Official Statistics, 1998; 1:65-87.
Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G.M. and Toreno, N. River flow forecast for reservoir management through neural networks. Neurocomputing., 2003; 55 (3): 421-437.
Bárdossy, A. and Disse, M. Fuzzy rule - based models for infiltration. Water Resour. Res., 1993; 29(2): 373-382.
Bhattacharya, B. and Solomatine, D.P. Machine learning in sedimentation modelling. Neural Networks, 2006; 19 (2): 208-214.
Bogardi, I., Bardossy, A., Duckstein, L. and Pongracz, R. Fuzzy logic in hydrology and water resources. Fuzzy Logic in Geology, (eds: Demicco, R.V. and Klir, G.J.), Elsevier, Academic Press, 2003; 153-190.
Bruen, M. and Yang, J. Functional networks in real-time flood forecasting-a novel application. Adv. Water Resour., 2005; 28 (9): 899-909.
Campolo, M., Andreussi, P. and Soldati, A. River flood forecasting with a neural network model. Water Resour. Res., 1999; 35 (4): 1191-1197.
Campolo, M., Soldati, A. and Andreussi, P. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J., 2003; 48 (3): 381-398.
Cannas, B., Fanni, A., See, L. and Sias, G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth., Parts A/B/C, 2006; 31(18): 1164-1171.
Castellano-Méndez, M.a., González-Manteiga, W., Febrero-Bande, M., Manuel Prada-Sánchez, J., Lozano-Calderón, R. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box–Jenkins and neural networks methods. J. Hydrol., 2004; 296 (1): 38-58.
Celik, O. and Ertugrul, S. Predictive human operator model to be utilized as a controller using linear, neuro-fuzzy and fuzzy-ARX modeling techniques. Eng. Appl. Artif. Intell., 2010; 23 (4): 595-603.
Cigizoglu, H.K. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour., 2004; 27 (2): 185-195.
Coulibaly, P., Anctil, F. and Bobée, B. Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Can. J. Civil Eng., 1999; 26 (3): 293-304.
Daliakopoulos, I.N., Coulibaly, P. and Tsanis, I.K., Groundwater level forecasting using artificial neural networks. J. Hydrol., 2005; 309 (1): 229-240.
Dibike, Y.B. and Solomatine, D.P. River flow forecasting using artificial neural networks. Phys. and Chem.Earth, PT B, 2001; 26 (1): 1-7.
Dorum, A., Yarar, A., Faik Sevimli, M. and Onüçyildiz, M. Modelling the rainfall-runoff data of susurluk basin. Expert Syst. Appl., 2010; 37 (9): 6587-6593.
Erdoğan, H. and Gülal, E. Identification of dynamic systems using multiple input–single output (MISO) models. Nonlinear Analysis: Real World Appl., 2009; 10 (2): 1183-1196.
Hagan, M.T. and Menhaj, M.B. Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw., 1994; 5 (6): 989-993.
Haykin, S. Blind Deconvolution (Prentice Hall Information and System Sciences), Prentice Hall. 1994, 288p.
Hsu, K.-l., Gupta, H.V. and Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 1995; 31 (10): 2517-2530.
Jain, A. and Srinivasulu, S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol., 2006; 317 (3): 291-306.
Jang, J.-S. ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man Cybern., 1993; 23 (3): 665-685.
Khan, M.S. and Coulibaly, P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res., 2006; 42 (7).
Kisi, E.H. and Elcombe, M.M. U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 1989; 45 (12): 1867-1870.
Kisi, O., Shiri, J. and Tombul M. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci., 2013; 51: 108-117.
Ljung, L. MATLAB: System Identification Toolbox: User's Guide Version 4. The Mathworks, 1995. 408p.
Lohani, A., Goel, N. and Bhatia, K. Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship. J. Hydrol., 2006; 331(1): 146-160.
Mallat, S.G. A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 1989; 11(7): 674-693.
Melching, C.S., Yen, B.C. and Wenzel Jr, H.G. Output reliability as guide for selection of rainfall-runoff models. J. Water Resour. Pl. Manage., 1991; 117(3): 383-398.
Mohammadi, K. Groundwater table estimation using MODFLOW and artificial neural networks, Pract. Hydroinform., 2008; 127-138.
Moosavi, V. and Vafakhah, M., Shirmohammadi, B., Behnia, N. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resour. Manage., 2013; 1-21.
Nason, G.P. and Von Sachs, R. Wavelets in time-series analysis. Philos. Trans. Roy. Soc. London. Ser. A Mat. Phys. Eng. Sci., 1999; 357(1760): 2511-2526.
Nayak, P., Sudheer, K. and Rangan, D., Ramasastri, K. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol., 2004; 291(1): 52-66.
Nayak, P., Venkatesh, B., Krishna, B. and Jain, S.K., 2013. Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach. J. Hydrol., 2013; 493:57-67.
Partal, T., Cigizoglu, H.K. Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. J. Hydrol., 2008; 358 (3): 317-331.
Rajurkar, M., Kothyari, U. and Chaube, U. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol., 2004; 285 (1): 96-113.
Sajikumar, N. and Thandaveswara, B. A non-linear rainfall–runoff model using an artificial neural network. J. Hydrol., 1999; 216(1): 32-55.
Shamseldin, A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol., 1997; 199 (3): 272-294.
Shiri, J. and Kisi, O. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol., 2010; 394 (3-4): 486-493.
Shirmohammadi, B., Vafakhah, M., Moosavi, V. and Moghaddamnia, A. Application of several data-driven techniques for predicting groundwater level. Water Resour. Manage., 2013; 27 (2): 419-432.
Talei, A., Chua, L.H.C. and Quek, C. A novel application of a neuro-fuzzy computational technique in event-based rainfall–runoff modeling. Expert Syst. Appl., 2010; 37 (12): 7456-7468.
Talei, A., Chua, L.H.C. and Wong, T.S.W. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling. J. Hydrol., 2010; 391 (3-4): 248-262.
Tokar, A.S. and Johnson, P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng., 1999; 4 (3): 232-239.
Tokar, A.S. and Markus, M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng., 2000; 5 (2): 156-161.
Vafakhah, M. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting. Canadian J. Civil. Eng., 2012; 39 (4): 402-414.
Vafakhah, M. Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting. Arab. J. Geos., 2013; 1-16.
Wang, W. and Ding, J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci., 2003; 1 (1): 67-71.
Xiong, L., O Connor, K.M. and Goswami, M. Application of the artificial neural network (ANN) in flood forecasting on a karstic catchment, Proceedings Of The Congress-International Assoc. Hydraulic Res., 2001; 29-35.
Yurekli, K., Kurunc, A. and Simsek, H. Prediction of daily maximum streamflow based on stochastic approaches. J. Spatial Hydrol., 2012; 4(2).
Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Schöler, H.R., Duan, L. and Ding, S. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009; 4(5): 381-384.