Volume 6, Issue 4 (2018)                   ECOPERSIA 2018, 6(4): 235-240 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sinaei M, Bolouki M, Mirshekar D. Temperature-Based Prediction of Sex Ratio in Hatchlings Green Sea Turtle (Chelonia mydas). ECOPERSIA 2018; 6 (4) :235-240
URL: http://ecopersia.modares.ac.ir/article-24-18964-en.html
1- Fisheries Department, Chabahar Branch, Islamic Azad University, Chabahar, Iran , oceanography.sina@gmail.com
2- Marine Scince Department, Marine Science Faculty, Marine Science & Technology University of Khoramshahr, Khoramshahr, Iran
3- Marine Scince Department, Marine Science & Technology Faculty, Science & Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (5202 Views)
Aims: It has been shown that sea turtles have temperature-dependent sex determination. Therefore, their sex determination is useful in understanding their reproduction ecology and population status. The aims of the present study were to estimate the sex ratio and to study the effect of inundation on the sex ratio of the hatchling green sea turtle (Chelonia mydas).
Materials & Methods: This experimental study was carried out on the 300km of Chabahar Beach on the northern coast of the Sea of Oman in July to December, 2015. Five areas which have the highest densities of nesting green sea turtles were chosen. The temperature of three different depths of green sea turtle clutches laid (50cm; above the egg hole, 85cm; center of egg hole and 120cm; below the egg hole) were recorded using automated intra-nest recording devices. Linear Regression Analysis and Pearson correlation coefficient were used. Statistical analyses of the data were conducted by SPSS 20 and Microsoft Office Excel 2010.
Findings: The statistical mean temperature in thermosensitive period (TSP) of the nests at three depths of 50cm, 85cm, and 120cm at the chabahar beaches were recorded between 26.1±1.1 to 30.6±1.0. The storm had decreased the mean temperature in thermosensitive period of the nests.
Conclusions: The storm decreases the mean temperature in thermosensitive period of the nests. The Nilofar storm stops the increasing feminization. It can be an important step in the implementation of conservation, rehabilitation, and reconstruction programmers.
Full-Text [PDF 374 kb]   (3322 Downloads)    
Article Type: Original Research | Subject: Aquatic Ecology
Received: 2018/04/15 | Accepted: 2018/09/11 | Published: 2018/11/21
* Corresponding Author Address: Fisheries Department, Chabahar Branch, Islamic Azad University, Chabahar, Iran. Postal Code: 9971774615

References
1. Fuentes MMPB, Hamann M, Limpus CJ. Past, Current and future thermal profiles of green turtle nesting grounds: Implications from climate change. J Exp Mar Biol Ecol. 2010;383(1):56-64. [Link] [DOI:10.1016/j.jembe.2009.11.003]
2. Troëng S, Rankin E. Long-term conservation efforts contribute to positive Green Turtle Chelonia mydus nesting trend at Tortuguero, Costa Rica. Biol Conserv. 2005;121(1):111-6. [Link] [DOI:10.1016/j.biocon.2004.04.014]
3. Booth DT, Astill K. Incubation temperature, energy expenditure and hatchling size in the Green Turtle (Chelonia mydas), a species with temperature-sensitive sex determination. Australian J Zoo. 2001; 49:389–96. [Link] [DOI:10.1071/ZO01006]
4. Sinaei M, Bolouki M. Metals in blood and eggs of green sea turtles (Chelonia mydas) from Nesting Colonies of the northern coast of the sea of Oman. Arch Environ Contam Toxicol. 2017;73(4):552-61 [Link] [DOI:10.1007/s00244-017-0421-x]
5. Askari Hesni M, Tabib M, Hadi Ramaki A. Nesting ecology and reproductive biology of the Hawksbill Turtle, Eretmochelys imbricata, at Kish Island, Persian Gulf. J Mar Biol Assoc UK. 2015;96(7):1373-8. [Link] [DOI:10.1017/S0025315415001125]
6. Tollab MA, Dakhteh MH, Ghorbanzadeh Zaferani Gh, Askari Hesni M, Ahmadi F, Shojaei Langari M, et al. The Olive Ridley Turtle, Lepidochelys olivacea, in the Persian Gulf: A review of the observations, including the first nesting of the species in the area. Chelonian Conserv Biol. 2015;14(2):192-6. [Link] [DOI:10.2744/CCB-1148.1]
7. Sinaei M, Bolouki M. Metals in blood and eggs of green sea turtles (Chelonia mydas) from nesting colonies of the northern coast of the sea of Oman. Arch Environ Contam Toxicol. 2017;73(4):552-61. [Link] [DOI:10.1007/s00244-017-0421-x]
8. Mohammadizadeh M, Soltanpour N. Identification and prioritizing important nesting sites of Green Turtle in Iranian beaches of Oman Sea during 2008-2010. Bull Environ Pharm Life Sci .2014;3(4):81-6. [Link]
9. Eckert KL, IUCN/SSC Marine Turtle Specialist Group, World Wildlife Fund (U.S.), Center for Marine Conservation, United States National Oceanic and Atmospheric Administration, International :union: for Conservation of Nature and Natural Resources, Species Survival Commission. Research and management techniques for the conservation of sea turtles. Washington: IUCN/Species Survival Commission Marine Turtles Specialist Group Publication; 1999. [Link]
10. Deem SL, Dierenfeld ES, Sounguet GP, Alleman AR, Cray C, Poppenga RH, et al. Blood values in free-ranging nesting Leatherback Sea Turtles (Dermochelys coriacea) on the coast of the Republic of Gabon. J Zoo Wild Med. 2006;37(4):464-71. [Link] [DOI:10.1638/05-102.1]
11. Perrault JR, Miller DL, Eads E, Johnson C, Merrill A, Thompson LJ, et al. Maternal health status correlates with nest success of Leatherback Sea Turtles (Dermochelys coriacea) from Florida. PLoS One. 2012;7(2):e31841. [Link] [DOI:10.1371/journal.pone.0031841]
12. Bilinski JJ, Reina RD, Spotila JR, Paladino FV. The effects of nest environment on calcium mobilization by leatherback turtle embryos (Dermochelys coriacea) during development. Comp Biochem Physiol A: Mol Integr Physiol. 2001;130(1):151-62 [Link] [DOI:10.1016/S1095-6433(01)00374-9]
13. Broderick AC, Godley BJ, Hays GC. Metabolic heating and the prediction of sex ratios for Green Turtles (Chelonia mydas). Physiol Biochem Zoo. 2001;74(2):161-70. [Link] [DOI:10.1086/319661]
14. Segura LN, Cajade R. The effects of sand temperature on pre-emergent Green Sea Turtle hatchling. Herpetol Conserv Biol. 2010;5(2):196-206. [Link]
15. DeGregorio BA, Williard AS. Incubation temperatures and metabolic heating of relocated and in situ Loggerhead Sea Turtle (Caretta caretta) nests at a Northern Rookery. Chelonian Conserv Biol. 2011;10(1):54-61. [Link] [DOI:10.2744/CCB-0880.1]
16. Kaska Y, Downie R, Tippett R, Furness RW. Natural temperature regimes for Loggerhead and Green Turtle nests in the eastern Mediterranean. Can J Zool .1998;76(4):723-9. [Link] [DOI:10.1139/z97-245]
17. Booth DT, Astill K. Incubation temperature, energy expenditure and hatchling size in the Green Turtle (Chelonia mydas), a species with temperature-sensitive sex determination. Aust J Zool. 2001;49(4):389-96. [Link] [DOI:10.1071/ZO01006]
18. Burgess EA, Booth DT, Lanyon JM. Swimming performance of hatchling green turtles is affected by incubation temperature. Coral Reefs.2006;25(3):341-49. [Link] [DOI:10.1007/s00338-006-0116-7]
19. Mrosovsky N, Dutton PH, Whitmore CP. Sex ratios of two species of sea turtle nesting in Suriname. Can J Zool. 1984;62(11):2227-39. [Link] [DOI:10.1139/z84-324]
20. Standora EA, Spotila JR. Temperature dependent sex determination in sea turtles. Copeia. 1985;1985(3):711-22. [Link] [DOI:10.2307/1444765]
21. Spotila JR, Standora EA, Morreale SJ, Ruiz GJ. Temperature dependent sex determination in the Green Turtle (Chelonia mydas): Effects on the sex ration on a natural beach. Herpetologica. 1987;43(1):74-81. [Link]
22. Godfrey MH, Mrosovsky N, Barreto R. Estimating past and present sex ratios of sea turtles in Suriname. Can J Zool. 1996;74(2):267-77. [Link] [DOI:10.1139/z96-033]
23. Drake DL, Spotila JR. Thermal tolerances and the timing of sea turtle hatchling emergence. J Thermal Biol.2002;27(1):71-81. [Link] [DOI:10.1016/S0306-4565(01)00017-1]
24. Godfrey MH, Mrosovsky N. Pivotal temperature for Green Sea Turtle, Chelonia mydas, nesting in Suriname. Br Herpetol J. 2006;16(1):55-61. [Link]
25. Hays GC, Houghton JD, Myers AE. Endangered species: Pan-Atlantic Leatherback Turtle movements. Nature. 2004;429(6991):522. [Link] [DOI:10.1038/429522a]
26. Matsuzawa Y, Sato K, Sakamoto W, Bjorndal K. Seasonal fluctuations in sand temperature: Effects on the incubation period and mortality of Loggerhead Sea Turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Mar Biol. 2002;140:639-46. [Link] [DOI:10.1007/s00227-001-0724-2]
27. Caut S, Guirlet E, Girondot M. Effect of tidal overwash on the embryonic development of Leatherback Turtles in French Guiana. Mar Environ Res. 2010;69(4):254-61. [Link] [DOI:10.1016/j.marenvres.2009.11.004]
28. Foley AM, Peck SA, Harman GR. Effects of sand characteristics and inundation on the hatching success of Loggerhead Sea Turtle (Caretta caretta) clutches on low-relief mangrove islands in southwest Florida. Chelonian Conserv Biol. 2006;5(1):32-41. [Link] [DOI:10.2744/1071-8443(2006)5[32:EOSCAI]2.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.