Comparing the Impact of Climate on Tectonic and Seismic Controls of Sediment Yield: Cold-Humid vs. Hot-Dry Regions of Iran

Authors
1 Academic Staff
2 SCWMRI, Shafiee st., Asheri St., Karaj Special Highway, Tehran Iran, Post Cod: 1389817635
Abstract
Aims: Over the past decades, extensive research has been conducted on basin-scale erosion evaluation models. A persistent challenge in this field is the significant discrepancy between model-estimated sediment yield (SY; t.km⁻².y⁻¹) and observed values at hydrometric stations. While various factors have been explored, the role of tectonic activity in controlling SY has received limited attention despite evidence highlighting its substantial influence. However, to date, no study has systematically examined how climatic conditions modulate the relationship between tectonic activity and sediment yield. This study aims to investigate the impact of tectonic indices on sediment yield across contrasting climatic regimes.

Materials & Methods: The analysis was conducted across 74 fifth-order sub-basins, distributed between two distinct climatic zones: cold-humid and hot-dry. Selected tectonic indices were correlated with measured sediment yield using regression analysis to assess their interrelationships within each climatic context.

Findings: The results reveal a significant positive linear relationship between tectonic indices and sediment yield in both climatic regions. Notably, the slope of this relationship is considerably steeper in cold-humid basins, suggesting a higher sensitivity of sediment yield to tectonic activity under these conditions compared to hot-dry environments.

Conclusion: The findings demonstrate that tectonic indices account for 44.11% to 67.48% of the variability in sediment yield in cold-humid climates, in contrast to 15.23% to 33.54% in hot-dry climates. Furthermore, the overall influence of climate on sediment production reaches up to 55% in cold-humid regions and up to 25% in hot-dry regions, indicating a stronger control under humid conditions.
Keywords

Subjects


1. Owens P.N., Batalla R.J., Collins A.J. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Appl. 2005; 21 (6–7): 693–717. https://doi.org/10.1002/rra.878
2. Vanmaercke M., Poesen J., Verstraeten G., de Vente J., Obled C. Sediment yield in Europe: Spatial patterns, local controls and temporal trends. Prog. Phys. Geog. 2011a; 35 (5): 651–675. https://doi.org/10.1016/j.geomorph.2011.03.010
3. Arabkhedri M. Water Erosion and Sediment Production Status in Iran: Statistical and Comparative Analyses. Strategic Research Journal of Agricultural Science and Natural Resources 2021; 6 (2): 139-156. https://sid.ir/paper/ 1055048/en
4. Haji K., Khaledi Darvishan A., Mostafazadeh, R. Soil erosion and sediment sourcing in the Hyrcanian forests, Northern Iran: an integration approach of the G2loss model and sediment fingerprinting technique. Model. Earth Syst. Environ. 2024; 10: 1897–1914. https://doi.org/10.1007/s40808-023-01879-z
5. Gavrilovic Z. The use of empirical method (erosion potential method) for calculating sediment production and transportation in unstudied or torrential streams. W. R. White Ed. Int. Con. on River Regime 1988; 411–422.
6. de Vente J., Poesen J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Science Reviews 2005; 71 (1–2): 95–125. https://doi.org/10.1016/j.earscirev.2005.02.002
7. de Vente J., Poesen j., Verstraeten G., Govers G., Vanmaercke M., Van Rompaey A., Arabkhedri M., Boix-Fayos C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Science Reviews, 2013; 127: 16-29, https:// doi.org/ 10.1016/j.earscirev.2013.08.014
8. Merritt W.S., Letcher R.A., Jakeman A.J. A review of erosion and sediment transport models. Environ. Modell. Softw. 2003; 18 (8–9): 761–799. https://doi.org/10.1016/ S1364-8152(03)00078-1
9. Milliman J.D., Syvitski J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992b; 100 (5): 525–544. https://doi.org/10.1086/629606
10. Syvitski J.P.M., Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 2007; 115 (1): 1–19. https://doi.org/10.1086/509246
11. Vanmaercke M., Kettner A.J., Van Den Eeckhaut M., Poesen J., Mamaliga A., Verstraeten G., Radoane M., Obreja F., Upton P., Syvitski J.M.P., Govers G. Moderate seismic activity affects contemporary sediment yields. Prog. Phys. Geog. 2014a; 38 (2): 145–172. https://doi.org/10.1177/0309133313516160
12. Vanmaercke M., Poesen J., Broeckx J. Nyssen J. Sediment yield in Africa. Earth Science Reviews 2014b;136: 10–29. https://doi.org/10.1016/j.earscirev.2014.06. 004
13. Poorasadollah S., Shoaei Z., Shariatjafari M., Sorbi A. Legacy of dam and sediment flushing operation: geomorphological changes of Sefidroud delta during 7 decades, South of the Caspian Sea. Journal of Geoscience and Environment Protection 2025; (13) 1–28. https://doi.org/10.4236/gep.2025.133001
14. Dadson S.J., Hovius N., Chen H.G., Dade W.B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen M.C., Stark C.P., Lague D., Lin J.C. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003; (426) 648–651. https://doi: 10.1038/ nature02150
15. Dadson S.J., Hovius N., Chen, H. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004; 32 (8): 733–736. https://doi.org/ 10.1130/G20639.1
16. Hovius N., Meunier P., Lin C.W., Chen H., Chen Y.G., Dadson S., Horng M.J., Lines M. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planet. Sc. Lett. 2011; 304 (3-4): 347-355. https://doi.org/10.1016/ j.epsl.2011.02.005.
17. Vanmaercke M., Ardizzone F., Rossi M., Guzzetti F. Exploring the effects of seismicity on landslides and catchment sediment yield: an Italian case study. Geomorphology. 2017; 278: 171-183, doi:10.1016/j. geomorph.2016.11.010
18. Whittaker A.C., Atta M., Allen P.A. Characterizing the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. 2010; Basin Res. 22, (6): 809-828. https://doi.org/10.1111/j.1365-2117.2009.00447.x
19. Larsen I.J., Montgomery D.R. Landslide erosion coupled to tectonics and river incision. NAT. GEOSCI. 2012; 5 (7): 468–473. https://doi.org/10.1038/ngeo1479
20. Yanites B.J., Tucker G.E., Mueller, K.J., Chen Y.C. How rivers react to large earthquakes: Evidence from central Taiwan. Geology 2010; 38 (8): 639–642. https://doi.org/10.1130/G30883.1
21. Shao X., Xu Ch. Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art, Natural Hazards Research. 2022; (2) 3: 172-182. https:// doi.org/10.1016/j.nhres.2022.03.002
22. Keefer D.K. Landslides generated by earthquakes: Immediate and long-term effects. Elsevier. Treatise on Geomorphology 2013; (5): 250–266. https://doi.org/10.1016/ B978-0-12-374739-6.00091-9
23. Malamud B.D., Turcotte D.L., Guzzetti F., Reichenbach P. Landslide inventories and their statistical properties. Earth Surf. Processes 2004; 29 (6): 687–711. https:// doi.org/10.1002/esp.1064
24. Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 2007a; 115 (1): 1–19. https://doi.org/10.1086/509246
25. Montgomery D.R., Brandon M.T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sc. Lett. 2002; 201 (2–4): 481–489. https://doi.org/10.1016/S0012-821X(02)00725-2
26. Antinao J.L., Gosse J.C. Cosmogenic nuclide constraints on earthquake-delivery to alluvial fans in the Atacama Desert, northern Chile. Geomorphology 2009a; 107 (3): 240–252. https://doi.org/10.1016/j.geomorph.2008.12.005
27. Hughes A., Rood D.H., DeVecchio D.E., Whittaker A.C., Bell R.E., Wilcken K.M., Corbett L.B., Bierman P.R., Swanson B.J., Rockwell T.K. Tectonic controls on Quaternary landscape evolution in the Ventura basin, southern California, USA, quantified using cosmogenic isotopes and topographic analyses. GSA Bull. 2022; 134 (9-10): 2245–2266. https://doi.org/10.1130 /B36076.1
28. Vanmaercke M., Poesen J., Verstraeten G. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology 2011b; 130 (3–4): 142–161. https:// doi.org/ 10.1016/j.geomorph.2011.03.010
29. Sinha S., Sinha R. Active tectonics, landscape evolution and sediment dynamics in Dehra Dun, Northwest Himalaya inferred from geomorphic indices and GIS tools. Quatern. INT. 2021; 585: 55-69, https://doi.org/10.1016/ j.quaint.2020.12.040
30. Duhnforth M., Anderson R.S., Ward D., Stock G.M. Bedrock fracture sets control the pace of mountain block denudation. Geology 2010; 38 (12): 1115–1118. https:// doi.org/10.1130/G30576.1
31. Koons P.O., Upton P., Barker A.D. The influence of mechanical properties on the link between tectonic and topographic evolution. Geomorphology 2012a; 137 (1): 168–180. https://doi.org/10.1016/j.geomorph.2010.11.012
32. Gabet E.J, Burbank D.W., Pratt-Sitaula B., Putkonen J., Bookhagen B. Modern erosion rates in the High Himalayas of Nepal. Earth Planet Sc. Lett. 2008; 267 (3-4): 482-494. https://doi.org/10.1016/j.epsl.2007.11.059
33. Molnar P., Anderson R.S., Anderson, S.P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. 2007; 112 (F3): F03014. https://doi.org/10.1029/2005JF000433
34. Portenga E. W., Bierman P. R. Understanding Earth's eroding surface with ¹⁰Be. GSA Today 2011; 21 (8): 4–10. https://doi.org/10.1130/G111A.1
35. Howarth J.D., Fitzsimons S.J., Norris R.J. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine Fault, New Zealand. Geology 2012; 40 (12): 1091–1094. https://doi.org/10.1130/G33486.1
36. Huang Y.F., Montgomery D.R. Fluvial response to rapid episodic erosion by earthquake and typhoons, Tachia River, central Taiwan. Geomorphology 2012; 175: 126–138. https://doi.org/10.1016/j.geomorph.2012.07.004
37. Meybeck M. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philos. T. Roy. Soc. B. 2003; 358 (1440): 1935–1955. https: //doi.org/10.1098/rstb.2003.1379
38. Vanmaercke M., Poesen J., Verstraeten G. Sediment yield as a desertification risk indicator. Sci. Total Environ. 2011c; 409 (9): 1715–1725. https://doi.org/10.1016/ j.scitotenv.2011.01.034
39. TAMAB, Iranian national water resources management plan. Iran Water Resources Management Company, Technical and Managerial Affairs Bureau 2012; https:// www.wrm.ir
40. Tabatabaei M.R., Salehpour Jam A., Hosseini A. Suspended sediment load prediction using non-dominated sorting genetic algorithm II. Elsevier International Soil and Water Conservation Research 2019; 7(2):119-129. https://doi.org/10.1016/ j.iswcr.2019.01.004
41. Ghorbani M. A summary of geology of Iran. Economic Geology of Iran, 2013; 17–35. Springer. https://doi.org/10.1007/978-94-007-5625-0_2
42. Hessami K., Jamali F., Tabassi H. Major active faults of Iran, 1 Sheet, scale 1:2,500,000. International Institute of Earthquake Engineering and Seismology, 2003; Tehran-Iran
43. IRSC, Iranian Seismological Center, Institute of Geophysics, University of Tehran, http://irsc.ut.ac.ir/
44. IIEES, https://www.iiees.ac.ir/en/
45. BHRC, Road, Housing & Urban Development Research Center, Seismology Engine-ering & Risk Tehran, IRAN, Roads, Department, https://www.bhrc.ac.ir/en-bsri/ research departments/seismology-engineering-risk department
46. PEER, Strong motion database 2022; http://hazard.efehr.org/en/Documentation/ specific-hazard-models/europe/overview/strong-motion-data/
47. Kanamori H. The energy release in great earthquakes. J. Geophys. Res. 1977; 82 (20): 2981–2987. https://doi.org/10.1029/JB082i020p02981
48. Rezaeemanesh M., Mashayekhi M. Investigating the correlation between the parameters of ground motion intensity measures for Iran’s data. J. Soft Computing and Civil Engineering. 2022; 6(4): 59–82. https://doi.org/ 10.22115/scce. 2022. 344135. 1450
49. Gourfi A., Matthias M., Poesen J., de vente J., Aqnouy M., Taibi A.N., Valentino R., Daoudi L., Geeter S.D., Briak H. Soil erosion and sediment yield in Africa: Processes and factors. J. AFR. EARTH SCI. 2025; 227: 105622. https:// doi.org/10.1016/j.jafrearsci.2025.105622