1. Hu W., Shao M.A., Hou M.T., She D.L., Si B.C. Mean soil water content estimation using measurements from time stable locations of adjacent or distant areas. J. Hydrol. 2013; 497: 234-243. https://doi.org/10.1016/j.jhydrol.2013.05.046
2. Vereecken H., Huisman J.A., Pachepsky Y., Montzka C., van der Kruk J., Bogena H., Weihermüller L., Herbst M., Martinez G., Vanderborght J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014; 516(4): 76-96. https://doi.org/10.1016/j.jhydrol.2013.11.061
3. Rasheed M.W., Tang J., Sarwar A., Shah S., Saddique N., Khan M.U., Imran Khan M., Nawaz S., Shamshiri R.R., Aziz M., Sultan M. Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability 2022; 14(18): 11538. https://doi.org/10.3390/su141811538
4. Ye N., Walker J.P., Gao Y., PopStefanija I., Hills J. Comparison between thermal-optical and L-band passive microwave soil moisture remote sensing at farm scales: Towards UAV-based near-surface soil moisture mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024; 17: 633-642.
DOI: 10.1109/JSTARS.2023.3329015
5. Zhang M., Zhang D., Jin Y., Wan X., Ge Y. Evolution of soil moisture mapping from statistical models to integrated mechanistic and geoscience-aware approaches. Information Geography 2025; 1(1): 100005. https://doi.org/10.1016/j.infgeo.2025.100005
6. Widyastuti M.T., Padarian J., Minasny B., Webb M., Taufik M., Kidd D. Mapping near-real-time soil moisture dynamics over Tasmania with transfer learning. Soil 2025; 11: 287–307. https://doi.org/10.5194/soil-11-287-2025
7. Bakhshian S., Zarepakzad N., Nevermann H., Hohenegger C., Or D., Shokri N. Field-scale soil moisture dynamics predicted by deep learning. Adv. Water Resour. 2025; 201: 104976. https://doi.org/10.1016/j.advwatres.2025.104976
8. Ursulino B.S., Montenegro S.M.G.L., Coutinho A.P., Coelho V.H.R., Araújo D.C.D.S., Gusmão A.C.V., Neto S.M.D.S., Lassabatere L., Angulo-Jaramillo R. Modelling soil water dynamics from soil hydraulic parameters estimated by an alternative method in a tropical experimental basin. Water 2019; 11: 1007. doi:10.3390/w11051007
9. Duarte E., Hernandez A. A review on soil moisture dynamics monitoring in semi-arid ecosystems: methods, techniques, and tools applied at different scales. Appl. Sci. 2024; 14(17): 7677. https://doi.org/10.3390/app14177677
10. Vereecken H., Huisman J.A., Hendricks Franssen H.J., Brüggemann N., Bogena H.R., Kollet S., Javaux M., van der Kruk J., Vanderborght J. Soil hydrology: Recent methodological advances, challenges and perspectives. Water Resour. Res. 2015; 51(4): 2616-2633. https://doi.org/10.1002/2014WR016852
11. Bai X., Jia X., Jia Y., Shao M., Hu W. Modeling long-term soil water dynamics in response to land-use change in a semi-arid area. J. Hydrol. 2020; 585: 124824. https://doi.org/10.1016/j.jhydrol.2020.124824
12. Cantón Y., Solé-Benet A., Domingo F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 2004; 285(1–4): 199-214. https://doi.org/10.1016/j.jhydrol.2003.08.018
13. Jafarian Jeloudar Z., Shabanzadeh S., Kavian A., Shokri M. Spatial variability of soil features affected by land use type using geostatistics. Ecopersia 2014; 2 (3): 667-679.
14. Shen M., Zhang J., Zhang S., Zhang H., Sun R., Zhang Y. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. 2020; 17: 2148–2160. https://doi.org/10.1007/s11629-019-5942-5
15. Jia X., Wang Y., Shao M., Luo Y., Zhang C. Estimating regional losses of soil water due to the conversion of agricultural land to forest in China's Loess Plateau. Ecohydrology 2017b; 10(6): e1851. https://doi.org/10.1002/eco.1851
16. Afshari M., Hashemi S.S., Attaeian B. Land use change effect on physical, chemical, and mineralogical properties of calcareous soils in western Iran. Ecopersia 2019; 7(1):47-57.
17. Jia X., Zhao C., Wang Y., Zhu Y., Wei X., Shao M. Traditional dry soil layer index method overestimates soil desiccation severity following conversion of cropland into forest and grassland on China’s Loess Plateau. Agriculture, Ecosystems and Environment 2020; 291: 106794. https://doi.org/10.1016/j.agee.2019.106794
18. Porhemmat J., Nakhaei M., Altafi Dadgar M., Biswas A. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. J. Hydrol. 2018; 565: 455-466. https://doi.org/10.1016/j.jhydrol.2018.08.036
19. Altafi Dadgar M., Nakhaei M., Porhemmat J., Eliasi B., Biswas A. Potential groundwater recharge from deep drainage of irrigation water. Sci. Total Environ. 2020; 716: 137105. https://doi.org/10.1016/j.scitotenv.2020.137105
20. Garcia-Prats A., del Campo A.D., Pulido-Velazquez M. A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resour. Res. 2016; 52: 8277-8294. https://doi.org/10.1002/2015WR018273
21. Jarvis N. J. Simulation of soil water dynamics and herbicide persistence in a silt loam soil using the MACRO model. Ecol. Modell. 1995; 81(1-3): 97-109. https://doi.org/10.1016/0304-3800(94)00163-C
22. Jarvis N.J., Messing I. Near-saturated hydraulic conductivity in soils of contrasting texture as measured by tension infiltrometers. Soil Sci. Soc. Am. J. 1995; 59(1): 27-34. https://doi.org/10.2136/sssaj1995.03615995005900010004x
23. Jarvis N.J., Hollis J.M., Nicholls P.H., Mayr T., Evans S.P. MACRO—DB: a decision-support tool for assessing pesticide fate and mobility in soils. Environ. Model. Softw. 1997; 12(2-3): 251-265. https://doi.org/10.1016/S1364-8152(97)00147-3
24. Fechter J., Allison B.E., Sivakumar M.V.K., Van Der Ploeg R.R., Bley J. An evaluation of the SWATRER and CERES-Millet models for southwest Niger. IAHS Publ. 1991; 199: 505-513.
25. van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., van Walsum P.E.V., Groenendijk P., van Diepen C.A. Theory of SWAP version 2.0; simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment. Report 71, Department Water Resources, Wageningen Agricultural University. 1997; 71: 167pp.
26. Van Dam J.C. Field scale water flow and solute transport: SWAP model concepts, parameter estimation and case studies. Ph.D. diss., Wageningen Univ., the Netherlands. 2000: 167pp.
27. Hutson J.L., Wagenet R.J. LEACHM: Leaching, estimation and chemistry model: A process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone, Version 2, Department of Agronomy, Cornell University, Ithaca, N.Y. 1989: 148 pp.
28. Hutson J. L., Wagenet R.J. Simulating nitrogen dynamics in soils using a deterministic model. Soil Use Manage. 1991; 7: 74–78. https://doi.org/10.1111/j.1475-2743.1991.tb00853.x
29. Hutson J.L. Leaching Estimation and Chemistry Model: A Process-Based Model of Water and Solute Movement, Transformations, Plant Uptake, and Chemical Reactions in the Unsaturated Zone. Version 4, Department of Crop and Soil Sciences, Research Series No. R03–1, Cornell University, Ithaca, NY, U.S.A. 2003.
30. Asada K., Eguchi S., Urakawa R., Itahashi S., Matsumaru T., Nagasawa T., Aoki K., Nakamura K., Katou H. Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant and Soil. 2013; 373: 609–625. https://doi.org/10.1007/s11104-013-1809-7
31. Šimůnek J., Šejna M., van Genuchten M.Th. The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably-saturated media. U.S. Salinity Laboratory. Agricultural Research Service, Riverside, California. 1999.
32. Šimůnek J., van Genuchten M.Th., Šejna M. The HYDRUS-1D Software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 3.0. Department of Environmental Sciences, University of California Riverside, Riverside, California. 2005.
33. Šimůnek J., Šejna M., van Genuchten M.Th. The HYDRUS software package for simulating two- and three-dimensional mvement of water, heat, and multiple solutes in variably-saturated media. User Manual, Version 1.0, PC Progress, Prague, Czech Republic. 2006.
34. Šimůnek J., Šejna M., Saito H., Sakai M., van Genuchten M.Th. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.08. Department of Environmental Sciences University of California Riverside, Riverside, California. 2009.
35. Šimůnek J., Van Genuchten M.Th., Šejna M. HYDRUS: Model use, calibration, and validation. Transactions of the ASABE. 2012; 55(4): 1261-1274. https://doi.org/10.13031/2013.42239
36. Šimůnek J., Sejna M., Saito H., Sakai M., van Genuchten M.Th. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media.Version 4.17, Department of Environmental Sciences, University of California, California, USA. 2015.
37. Šimůnek J., van Genuchten M.Th., Šejna M. Recent developments and applications of the HYDRUS-1D computer software packages. Vadose Zone J. 2016; 15(7): 1-25. https://doi.org/10.2136/vzj2016.04.0033
38. Radcliffe D.E., Šimůnek J. Soil Physics with HYDRUS: Modeling and Applications. 1st Edition, CRC Press. 2018: 388 pp. https://doi.org/10.1201/9781315275666
39. Richards Lisa A. Capillary conduction of liquids through porous mediums,
J. Appl. Phys. 1931; 1: 318-333. https://doi.org/10.1063/1.1745010
40. Abbasi F., Adamsen F.J., Hunsaker D.J., Feyen J., Shouse P., van Genuchten M.Th. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. J. Irrig. Drain. Eng. 2003; 129(4): 237-254 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:4(237)
41. Wang F.X., Kang Y., Liu S.P. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agric. Water Manag. 2006; 79(3): 248-264. https://doi.org/10.1016/j.agwat.2005.02.016
42. Skaggs T. H., Trout T. J., Šimůnek J., Shouse P. J. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J. Irrig. Drain. Eng. 2004; 130(4): 304-310. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:4(304)
43. Wöhling T. Seasonal Furrow Irrigation Modelling with HYDRUS2: In Proceedings of Workshop on HYDRUS Applications. October 19, 2005, Department of Earth Sciences Utrecht University, The Netherlands: 74-77.
44. Siyal A.A., Skaggs T.H. Measured and simulated soil wetting patterns under porous clay pipesub-surface irrigation. Agric. Water Manag. 2009; 96(6): 893-904. https://doi.org/10.1016/j.agwat.2008.11.013
45. Patel N., Rajput T.B.S. Dynamics and modeling of soil water under subsurface drip irrigated onion. Agric. Water Manag. 2008; 95(12): 1335-1349. https://doi.org/10.1016/j.agwat.2008.06.002
46. Cheng X., Huang M., Si B.C., Yu M., Shao M. The differences of water balance components of Caragana korshinkii grown in homogeneous and layered soils in the desert–Loess Plateau transition zone. J. Arid Environ. 2013; 98: 10-19. https://doi.org/10.1016/j.jaridenv.2013.07.007
47. Essig E.T., Corradini C., Morbidelli R., Govindaraju R.S. Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. J. Hydrol. 2009; 374(1-2): 30-42. https://doi.org/10.1016/j.jhydrol.2009.05.017
48. Guan H., Šimůnek J., Newman B.D., Wilson J.L. Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope. Hydrol. Process. 2010; 24(9): 1095-1105. https://doi.org/10.1002/hyp.7571
49. Wang H., Tetzlaff D., Soulsby C. Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment. J. Hydrol. 2018; 558: 520–531. https://doi.org/10.1016/j.jhydrol.2018.02.002
50. Besharat S., Nazemi A.H., Sadraddini A.A. Shahmorad S. Applications of HYDRUS and the proposed SWMRUM software in simulating water flow with root water uptake through soils. Water and Soil Scienc. 2011; 21(4): 121-137. DOI:10.22034/ws.2021.12155
51. Altafi Dadgar M., Nakhaei M., Porhemmat J., Biswas A., Rostami M. Transient potential groundwater recharge under surface irrigation in semiarid environment: An experimental and numerical study. Hydrol. Process. 2018; 32(25): 3771-3783. https://doi.org/10.1002/hyp.13287
52. Noorabadi S., Sadraddini S.A.A., Nazemi A.H., Delirhasannia R. Application of the SIRMOD and HYDRUS-3D Models to Completely Simulate the Furrow Irrigation Process. Iranian J. of irrig. and drain. 2014; 8(3): 443-452.
53. Xiaoxu J., Shao M., Zhu Y., Luo Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017; 546: 113-122.
https://doi.org/10.1016/j.jhydrol.2017.01.011
54. Elnesr M.N., Alazba A.A. Computational evaluations of HYDRUS simulations of drip irrigation in 2D and 3D domains (i-Surface drippers). Comput. Electron. Agr. 2019; 162: 189-205. https://doi.org/10.1016/j.compag.2019.03.035
55. Forkutsa I., Kaas R.S. Shirokova Y.I., Lamers J.P.A., Kienzler K., Tischbein B., Martius C., Vlek P.L.G. Modeling irrigated cotton with shallowgroundwater in the Aral Sea Basin of Uzbekistan: I. water dynamics. Irrig. Sci. 2009; 27: 331-346. DOI: 10.1007/s00271-009-0148-1
56. Šimůnek J., van Genuchten M.Th., Sejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal 2008; 7: 587-600. https://doi.org/10.2136/vzj2007.0077
57. Xie T., Liu X., Sun T. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol. Model. 2011; 222(2): 241-252.
https://doi.org/10.1016/j.ecolmodel.2010.01.012
58. Djabelkhir K., Lauvernet C., Kraft P., Carluer N. Development of a dual permeability model within a hydrological catchment modeling framework: 1D application. Sci. Total Environ. 2017; 575: 1429–1437.
https://doi.org/10.1016/j.scitotenv.2016.10.012
59. Hu W., Wang Y.Q., Li H.J., Huang M.B., Hou M.T., Li Z., She D.L., Si B.C. Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. J. Hydrol. 2019; 578: 124042. https://doi.org/10.1016/j.jhydrol.2019.124042
60. Guo Y., Fang G., Xu Y P., Tian X., Xie J. Identifying how future climate and LU/cover changes impact streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2020; 710: 136275. https://doi.org/10.1016/j.scitotenv.2019.136275
61. Zhang C., Wang Y., Jia X., Shao M., An Z. Variations in capacity and storage of plant-available water in deep profiles along a revegetation and precipitation gradient. J. Hydrol. 2020; 581: 124401. https://doi.org/10.1016/j.jhydrol.2019.124401
62. Porhemmat J., Altafi-Dadgar M., Abdolnabi Abdeh-Kolahchi A. Modeling long-term soil water dynamics in response to land use changes: Pilot study of Telo region. SCWMRI., 2023; 64810: 73 pp.
63. Grossman R.B., Reinsch T.G. Bulk density and linear extensibility: Core Method. In: Dane, J.H. and Topp, G.C. (Eds), Methods of Soil Analysis, Part 4, SSSA Book Series. American Society of Agronomy, Madison. 2002; WI: 201–228.
64. Dane J.H., Hopmans J.W. Pressure plate extractor. In: Dane, J., Topp, C (Ed.), Methods of Soil Analysis, Part 4, SSSA Book Series. American Society of Agronomy, Madison. 2002; WI: 688–690.
65. Gee G.W., Or D. Particle size analysis. In: Dane, J.H. and Topp, G.C., (Eds.), Methods of Soil Analysis, Part 4, Physical Methods, Soils Science Society of America, Book Series No. 5, Madison. 2002: 255-293.
66. Feddes R.A., Kowalik P.J., Zaradny H. Simulation of Field Water Use and Crop Yield. John Wiley & Sons. 1978: 189pp.
67. Van Genuchten M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980; 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
68. Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976; 12(3): 513-522. https://doi.org/10.1029/WR012i003p00513
69. Turkeltaub T., Kurtzman D., Bel G., Dahan O. Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. J. Hydrol. 2015; 522: 618-627. https://doi.org/10.1016/j.jhydrol.2015.01.026
70. Kashyap P.S., Panda R.K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric. Water Manag. 2001; 50(1): 9-25. https://doi.org/10.1016/S0378-3774(01)00102-0
71. Allen R.G., Pereira L.S., Raes D., Smith, M. Crop evapotranspiration - guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56, FAO, 1998, ISBN 92-5-104219-5.
72. Jiménez-Martínez J., Skaggs T.H., van Genuchten M.Th., Candela L. A root zone modelling approach to estimating groundwater recharge from irrigated areas. J. Hydrol. 2009; 367: 138-149. https://doi.org/10.1016/j.jhydrol.2009.01.002
73. Schaap M.G., Leij F.J., van Genuchten M.Th. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001; 251(3-4): 163-176. DOI:10.1016/S0022-1694(01)00466-8
74. Zhao M., Wang W., Ma Z., Wang Q., Wang Z., Chen L., Fu B. Soil water dynamics based on a contrastive experiment between vegetated and non-vegetated sites in a semiarid region in Northwest China. J. Hydrol., 2021, 603A, 126880. https://doi.org/10.1016/j.jhydrol.2021.126880