1- Abedi M., Omidipour R., Hosseini S.V., Bahalkeh K., Gross N. Fire disturbance effects on plant taxonomic and functional β‐diversity mediated by topographic exposure. Ecol. Evol. 2022; 12(1): https://doi.org/10.1002/ece3.8552
2- Mirzaei J., Heydari M., Omidipour R., Jafarian N., Carcaillet C. Decrease in soil functionalities and herbs’ diversity, but not that of arbuscular mycorrhizal fungi, linked to short fire interval in semi-arid oak forest ecosystem, west Iran. Plants. 2023; 12(5): 1112. https://doi.org/10.3390/plants12051112
3- Moradizadeh H., Heydari M., Omidipour R., Mezbani A., Prevosto B. Ecological effects of fire severity and time since fire on the diversity partitioning, composition and niche apportionment models of post-fire understory vegetation in semi-arid oak forests of Western Iran. Ecol. Eng. 2020; 143: 105694. https://doi.org/10.1016/j.ecoleng.2019.105694
4- Sharifi Z., Azadi N., Certini G. Fire and tillage as degrading factors of soil structure in Northern Zagros Oak Forest, West Iran. Land Degrad. Dev. 2017; 28(3): 1068-1077. https://doi.org/10.1002/ldr.2649
5- Jahdi R., Salis M., Darvishsefat A.A., Mostafavi M.A., Alcasena F., Etemad V., Lozano O., Spano D. Calibration of FARSITE simulator in northern Iranian forests. Nat. Hazards Earth Syst. Sci. 2015; 15: 443–459. https://doi.org/10.5194/nhess-15-443-2015
6- Sun W., Liu X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020; 7(1):1-14. https://doi.org/10.1186/s40663-019-0210-2
7- Chamberlain C.P., Cova G.R., Cansler C.A., North M.P., Meyer M.D., Jeronimo S.M., Kane V.R. Consistently heterogeneous structures observed at multiple spatial scales across fire-intact reference sites. For. Ecol. Manage. 2023; 550: 121478. https://doi.org/10.1016/j.foreco.2023.121478
8- Arunrat N., Sereenonchai S., Kongsurakan P., Yuttitham M., Hatano R. Variations of soil properties and soil surface loss after fire in rotational shifting cultivation in Northern Thailand. Front. Environ. Sci. 2023; 11:1213181. https://doi.org/10.3389/fenvs.2023.1213181
9- Hrenović J., Kisić I., Delač D., Durn G., Bogunović I., Mikulec M., Pereira P. Short-Term Effects of Experimental Fire on Physicochemical and Microbial Properties of a Mediterranean Cambisol. Fire. 2023; 6(4): 155. https://doi.org/10.3390/fire6040155 ·
10- Carmo M., Moreira F., Casimiro P., Vaz P. Land use and topography influences on wildfire occurrence in northern Portugal. Landsc. Urban Plan. 2011; 100:169–176. https://doi.org/10.1016/j.landurbplan.2010.11.017
11- Jaafari A., Gholami D.M., Zenner E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol. Inform. 2017; 39: 32-44. https://doi.org/10.1016/j.ecoinf.2017.03.003
12- Oliveira S., Oehler F., San-Miguel-Ayanz J., Camia A., Pereira J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manage. 2012; 275: 117–129. https://doi.org/10.1016/j.foreco.2012.03.003
13- Pourtaghi Z.S., Pourghasemi H.R., Aretano R., Semeraro T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol. indic. 2016; 64: 72-84. https://doi.org/10.1016/j.ecolind.2015.12.030
14- Bowman M.J.S.D., Moreira-Munoz A., Kolden C.A., Chavez R.O., Munoz A.A., Salinas F., Gonzalez-Reyes A., Rocco R., de la Barrera F., Williamson G.J., Borchers N., Cifuentes L.A., Abatzoglou J.T., Johnston F.H. Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. 2019; 48: 350-362. Ambio. https://doi.org/10.1007/s13280-018-1084-1
15- Paschalidou A. K., Kassomenos P. A. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology. Sci Total Environ. 2016; 539: 536-545. https://doi.org/10.1016/j.scitotenv.2015.09.039
16- Wotton B.M., Flannigan M.D., Marshall G.A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017; 12 (9): 1–13. https://doi.org/ 10.1088/1748-9326/aa7e6e
17- Eskandari S., Pourghasemi H.R., Tiefenbacher J.P. Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. For. Ecol. Manage. 2020; 473:118338. https://doi.org/ 10.1016/j.foreco.2020.118338
18- Lasslop G., Kloster S. Human impact on wildfires varies between regions and with vegetation productivity. Environ. Res. Lett. 2017; 12. https://doi.org/ 10.1088/1748-9326/aa8c82
19- Artes T., Cencerrado A., Cortes A., Margalef T. Relieving the effects of uncertainty in forest fire spread prediction by hybrid MPI-OpenMP parallel strategies. International Conference on Computational science, Procedia Computer Science. 2013; 18: 2278-2287. https://doi.org/10.1016/j.procs.2013.05.399
20- Amiri M., Pourghasemi H. R. Predicting areas affected by forest fire based on a machine learning algorithm. Environ. Earth Sci. 2022; 351-362. https://doi.org/10.1016/B978-0-323-89861-4.00004-X
21- He W., Shirowzhan S., Pettit C.J. GIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data. ISPRS Int J Geoinf. 2022; 11(6): 336. https://doi.org/10.3390/ijgi11060336
22- Shearman T.M., Varner J.M., Hood S.M., van Mantgem P.J., Cansler C.A., Wright M. Predictive accuracy of post‐fire conifer death declines over time in models based on crown and bole injury. Ecol. Appl. 2023; 33(2): e2760. https://doi.org/10.1002/eap.2760
23- Ebrahimy H., Rasuly A., Mokhtari. Development of a Web GIS System Based on the MaxEnt Approach for Wildfire Management: A Case Study of East Azerbaijan. Ecopersia. 2017; 5(3): 1859-1873. https://doi.org/10.18869/modares.Ecopersia.5.3.1859
24- Eastaugh C.S., Hasenauer H. Deriving forest fire ignition risk with biogeochemical process modelling. Environ. Model. Softw. 2014; 55: 132-42. https://doi.org/10.1016/j.envsoft.2014.01.018
25- Woo H., Chung W., Graham J., Lee B. Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation. Int. J. Wildland Fire. 2017; 26(9): 789-805. https://doi.org/10.1071/WF17021
26- Thomas C.M., Sharples J.J., Evans J.P. Modelling the dynamic behaviour of junction fires with a coupled atmosphere–fire model. Int. J. Wildland Fire. 2017; 26(4): 331-344. https://doi.org/10.1071/WF16079
27-Mohajane M., Costache R., Karimi F., Bao Pham Q., Essahlaoui A., Nguyen H., Laneve G., Oudij F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021; 129:107869. https://doi.org/10.1016/j.ecolind.2021.107869
28-Babu K.N., Gour R. Ayushi K., Ayyappan N., Parthasarathy N. Environmental drivers and spatial prediction of forest fires in the Western Ghats biodiversity hotspot, India: an ensemble machine learning approach. For. Ecol. Manag. 2023; 540: 121057. https://doi.org/10.1016/j.foreco.2023.121057
29- Sadeghi A., Ahmadi Nadoushan M., Ahmadi Sani N. Segment-level modeling of wildfire susceptibility in Iranian semi-arid oak forests: Unveiling the pivotal impact of human activities. Trees For. People. 2024; 15: 100496. https://doi.org/10.1016/j.tfp.2024.100496
30- Farashi A.; Shariati M.; Hosseini M. Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm. Biol. 2017; 87: 71–88. https://doi.org/10.1016/j.mambio.2017.06.002
31- Su L., Heydari M., Omidipour R. Soheili F., Cheraghi J., Villa P.M., Prévosto B. Stand structural diversity and elevation rather than functional diversity drive aboveground biomass in historically disturbed semiarid oak forests. For. Ecol. Manage. 2023; 543: 121139. https://doi.org/10.1016/j.foreco.2023.121139
32- Eskandari S., Ali Mohamadi Sarab S. Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2 Google Earth and field data. Ecol. Inform. 2022; 70, 101727. https://doi.org/10.1016/j.ecoinf.2022.101727
33- Ghanbari Motlagh M., Abbasnezhad Alchin A., Daghestani M. Detection of high fire risk areas in Zagros Oak forests using geospatial methods with GIS techniques. Arab. J. Geosci. 2022; 15(9): 835. https://doi.org/:10.1007/s12517-022-10096-4
34- Rostami N., Heydari M., Uddin S.M., Esteban Lucas-Borja M., Zema D.A. Hydrological response of burned soils in croplands, and pine and oak forests in Zagros forest ecosystem (western Iran) under rainfall simulations at micro-plot scale. Forests. 2022; 13(2), 246. https://doi.org/10.3390/f13020246
35- Sivrikaya F., Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022; 68(3): 101537. https://doi.org/10.1016/j.ecoinf.2021.101537
36- Michael Y., Helman D., Glickman O., Gabay D., Brenner S., Lensky I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021; 764: 142844. https://doi.org/10.1016/j.scitotenv.2020.142844
37- Pettinari M.L., Chuvieco E. Fire danger observed from space. Surv. Geophys. 2020; 41(6): 1437-1459. https://doi.org/10.1007/s10712-020-09610-8
38- Bazyar M., Oladi Ghadikolaii J., Pourghasemi H.R., Serajyan maralan, M.R. Zoning and Investigation of Factors Affecting Forest Fire Using Evidential Belief Function Algorithm and Support Vector Machine in Boyer Ahmad City. Iran. J. For. Ran. Protec. Res. 2020; 17(2): 197-222. https://doi.org/0.22092/ijfrpr.2020.128649.1406
39- Hong H., Naghibi S.A., Moradi Dashtpagerdi M., Pourghasemi H.R., Chen W. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian. J. Geosci. 2017; 10: 1-14. https://doi.org/10.1007/s12517-017-2905-4
40-Merino-de-Miguela S., Huescab M., González-Alonsob F. Modis reflectance and active fire data for burn mapping and assessment at regional level. Ecol. Model. 2010; 67–74. https://doi.org/10.1016/j.ecolmodel.2009.09.015
41- Yin D., Gou X., Yang H., Wang K., Liu J., Zhang Y., Gao L. Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau. Clim Change. 2023; 176(6): 77. https://doi.org/10.1016/j.foreco.2021.119551
42- Mirzaei J., Karami A. Plant diversity and richness in relation to environmental gradient in Zagros ecosystems, West of Iran. J. Rangeland Sci. 2015; 5(4): 294-302.
43- Bagheri S., Zare-Maivan H., Heydari M., Kazempour Osaloo S. Relationship between broadleaved mixed forest understory species groups with soil and elevation in a semi-arid Persian oak (Quercus brantii L.) ecosystem. Casp. J. Environ. Sci. 2020; 18(2): 157-170. https://doi.org/10.22124/cjes.2020.4071
44- Rodriguez-Jimenez F., Lorenzo H., Acuna-Alonso C., Alvarez X. PLS-PM analysis of forest fires using remote sensing tools. The case of Xurés in the Transboundary Biosphere Reserve. Ecol. Inform. 2023; 75: 102010. https://doi.org/10.1016/j.ecoinf.2023.102010
45- Erfanzadeh R., Omidipour R., Faramarzi M. Variation of plant diversity components in different scales in relation to grazing and climatic conditions. Plant Ecol. Divers. 2015; 8: 537-545. https://doi.org/10.1080/17550874.2015.1033774
46- Omidipour R., Erfanzadeh R., Faramarzi M. Climatic condition effects on the components of plant diversity in the western Iran grasslands using multiplicative partitioning methods. Casp. J. Environ. Sci. 2021; 191-10. https://doi.org/10.22124/CJES.2021.4302
47- Adab H., Kanniah K.D., Solaimani K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat. Hazards. 2013; 65:1723-1743. https://doi.org/10.1007/s11069-012-0450-8
48- Eskandari S., Miesel J.R. Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran. Geomat. Nat. Hazards Risk. 2017; 8: 1-17. https://doi.org/10.1080/19475705.2017.1289249
49-Xu H, Schoenberg F.P. Point process modeling of wildfire hazard in Los Angeles County, California. Ann. Appl. Stat. 2011; 5(2):684-704. https://doi.org/10.1214/10-AOAS401
50- Wasserman T.N., Mueller S.E. Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023; 19(1): 43. https://doi.org/10.1186/s42408-023-00200-8
51- Zhang B., Cai D., Ai S., Wang H., Zuo X. Research on the influencing factors and prevention measures of long-term forest fire risk in Northeast China. Ecol. Indic. 2023;155: 110965. https://doi.org/10.1016/j.ecolind.2023.110965
52- Charizanos G, Demirhan H. Bayesian prediction of wildfire event probability using normalized difference vegetation index data from an Australian forest. Ecol. Inform. 2023; 73:101899. https://doi.org/10.1016/j.ecoinf.2022.101899
53- Morovati M, Karami P. Modeling the seasonal wildfire cycle and its possible effects on the distribution of focal species in Kermanshah Province, western Iran. PLoS ONE. 2024; 19(10): e0312552. https://doi.org/10.1371/journal.pone.0312552
54- Sowmya S.V., Somashekar R.K. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India. J Environ Biol. 2010; 31(6): 969-974.
55- Mohammadi F., Bavaghar M.P., Shabanian N. Forest fire risk zone modeling using logistic regression and GIS: an Iranian case study. Small-scale For. 2014; 13: 117-125. https://doi.org/10.1007/s11842-013-9244-4
56- Mahmoudi B., Eric N.g., Mafi-Gholami D., Eshaghi F. Forest Dwellers’ Dependence on Forest Resources in Semi-Arid Environments. Sustainability. 2023; 15(3): 2689. https://doi.org/10.3390/su15032689
57- Bazyar M., Oladi Ghadikolaii J., Pourghasemi, H.R., Serajyan maralan M.R. Zoning and Investigation of Factors Affecting Forest Fire Using Evidential Belief Function Algorithm and Support Vector Machine in Boyer Ahmad City. Iran. J. For. Ran. Protec. Res. 2018; 17(2): 197 -222. https://doi.org/10.22092/ijfrpr.2020.128649.1406
58- Emami H., Shahriari H. Quantification of environmental and human factors in the occurrence of forest fire with RS and GIS methods. Arsbaran protected areas. Res. Quae. Geography. Data. 2020; 28(112): 35- 53. https://doi.org/10.22131/sepehr.2020.38606
59- janbaz Ghobadi G. Investigation of forest fire hazard areas in Golestan province based on fire risk system index (FRSI) using the technique (GIS). J. Environ. risk analy. 2018; 6(3):89-102.
60-Moghim S., Mehrabi M. Wildfre assessment using machine learning algorithms in diferent region. Fire. Eco. 2024; 20:104. https://doi.org/10.1186/s42408-024-00335-2
61- Eshaghi M.A., Shataee Jouibary S.h. Preparation map of Forest Fire Risk Using SVM, RF and MLP Algorithms (Case Study: Golestan National Park, Northeastern Iran). J. Wood. For. Sci.Technol. 2016; 23 (4): 133-154. https://doi.org/10.22069/JWFST.2016.9297.1496
62- Zhao L., Ge Y., Guo S., Li X., and Chen S. Forest fire susceptibility mapping based on precipitation-constrained cumulative dryness status information in Southeast China: A novel machine learning modeling approach. For. Ecol. Manage. 2024; 558: 121771. https://doi.org/10.1016/j.foreco.2024.121771
63- Holden Z., Morgan P., Evans J. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. For. Ecol. Manage. 2009; 258(11): 2399–2406. https://doi.org/10.1016/j.foreco.2009.08.017