Economic Valuation of Atmospheric Gas Regulation Services through Spatial Modeling ‎in Kerman Province, Iran

Document Type : Original Research

Authors
1 Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, ‎Zabol, Iran
2 Environmental Science Department, Faculty of Natural Resources and Environment, University ‎of Birjand, Birjand, Iran
Abstract
Aims: The absorption of atmospheric Carbon dioxide for Carbon sequestration plays a vital role in regulating the climate. This study aimed to economically evaluate Carbon absorption and Oxygen supply in Kerman Province using ecosystem service modeling.

Materials & Methods: Terrestrial Carbon storage was assessed using InVEST software, considering aboveground biomass, belowground biomass, soil, and litter/ dead organic matter. Oxygen supply in the ecosystem was also calculated based on Carbon relationships. The economic valuation of Carbon and Oxygen supply was determined using the social cost of Carbon dioxide and replacement cost, respectively.

Findings: In 2021, Kerman Province was estimated to sequester 6,896,182.89 t.y-1 of Carbon and produce 18,481,770.36 t.y-1 of Oxygen. The economic value of Carbon sequestration and Oxygen supply in the Province was calculated at 354,325,877 and 1,686,461,545 $.y-1, totaling $2,040,787,422 in 2021.

Conclusion: The economic valuation of Carbon sequestration and the Oxygen supply spatially demonstrate the multiple roles of vegetation cover in the economy, which help maintain and restore it. Economic valuation maps of studied ecosystem services have comprehensive land management and planning applications. Furthermore, they underscore the importance of incentives for long-term Carbon storage to encourage sustainable practices.
Keywords

Subjects


‎1.‎ Yin C., Zhao W., Ye J., Muroki M., Pereira P. Ecosystem carbon sequestration service ‎supports the Sustainable Development Goals progress. J Environ Manage. 2023; ‎‎330:117155. https://doi.org/10.1016/j.jenvman.2022.117155‎
‎2. ‎ Change I. 2006 IPCC guidelines for national greenhouse gas inventories. Inst Glob ‎Environ Strateg Hayama, Kanagawa, Japan. 2006. https://www.ipcc-‎nggip.iges.or.jp/public/2006gl/‎
‎3. ‎ Lal R., Augustin B. Carbon sequestration in urban ecosystems. Springer Science & ‎Business Media; 2011. https://doi.org/10.1007/978-94-007-2366-5‎
‎4. ‎ Shahzad K., Sintim H., Ahmad F., Abid M., Nasim W. Importance of carbon ‎sequestration in the context of climate change. Build Clim Resil Agric Theory, Pract ‎Futur Perspect. 2022; 385–401. https://doi.org/10.1007/978-3-030-79408-8_23‎
‎5. ‎ Gibbs H.K, Brown S, Niles J.O, Foley J.A. Monitoring and estimating tropical forest ‎carbon stocks: making REDD a reality. Environ Res Lett. 2007; 2(4):45023. ‎https://doi.org/10.1088/1748-9326/2/4/045023‎
‎6. ‎ Bitoun R.E., David G, Devillers R. Strategic use of ecosystem services and co‐benefits ‎for Sustainable Development Goals. Environ. Res. Lett.Sustain Dev. 2023; 31(3):1296–‎‎310. https://doi.org/10.1002/sd.2448‎
‎7. ‎ Kim J., Hong M., Choi S-E., Song C., Lim C-H., Choi YE, et al. Supply and demand ‎assessment and mismatch analysis of ecosystem services to support sustainable land ‎management. In: EGU General Assembly Conference Abstracts. 2023. p. EGU-11101. ‎https://doi.org/10.5194/egusphere-egu23-11101‎
‎8. ‎ Gamon J.A. Revisiting the carbon–biodiversity connection. Glob Chang Biol. 2023; ‎‎29(18): 5117–5119. https://doi.org/10.1111/gcb.16697‎
‎9. ‎ Miles D.C. Exploring faunal conservation in carbon projects through Map of Life: A case ‎study. Nat Sci Educ. 2022; 51(2):e20079. https://doi.org/10.1002/nse2.20079‎
‎10. ‎ World Bank. State and Trends of Carbon Pricing 2022le [Internet]. Washington, DC: ‎World Bank; 2022. 74 p. https://hdl.handle.net/10986/37455‎
‎11. ‎ Erfanzadeh R., Motamedi J. Effect of slope and vegetation on carbon sequestration in a ‎semi-dry rangeland of western Iran, case study: Khanghah Sorkh, Urmia. Water Soil. ‎‎2013; 27(4): 703–11. https://doi.org/10.22067/jsw.v0i0.28088‎
‎12. ‎ Varamesh S., Abdi N. Effect of afforestation with broadleaf species on carbon ‎sequestration in soil of chitgar Forest Park of Tehran. Iran J soil Res. 2011; 25(3): 187–‎‎96. https://doi.org/10.22092/ijsr.2011.126482‎
‎13. ‎ Yeganeh H., Azarnivand H., Saleh I., Arzani H., Amirnejad H. Estimation of economic ‎value of the gas regulation function in rangeland ecosystems of Taham watershed basin. ‎Rangeland 2015; 9(2): 106–19. http://rangelandsrm.ir/article-1-191-fa.html
‎14. ‎ Nasri M., Ghorbani M., Azarnivand H., Rafiee H. Economic valuation of stocked carbon ‎function in arid and semi-arid rangelands (case study: Malard District). Iranian J Range ‎Desert Res. 2016; 23(2): 403–396. ‎http://ijrdr.areeo.ac.ir/article_107040_388a111f6e9386dbcf053a7d39ca152e.pdf
‎15. ‎ Rastgar S., Najafpour Z., Jafarian Z., Ghorbani J. Investigation and Comparison of the ‎Economic value of carbon sequestration function of vegetation cover in biological ‎operations (Case study: Sarbishe Rangelands-South Khorasan Province). J Environ Stud. ‎‎2018; 44(1): 131–48. https://doi.org/10.22059/jes.2018.242342.1007506‎
‎16. ‎ Tarnian F., Amoli Kondori A., Mansouri M., Asadolahi Z. Economic valuation of carbon ‎sequestration in dam lakes of Chuman and Kani Goizhan and their water transfer systems ‎in Kordestan Province. PEC. 2020; 7(15): 71–87. http://pec.gonbad.ac.ir/article-1-511-‎en.html
‎17. ‎ Soleimanipour S.S., Adeli K., Mafi-Gholami D., Naghavi H. Economic evaluation of ‎carbon sequestration in Zagros oak forests (Case study: the Pahnus forest habitat, ‎Chaharmahal and Bakhtiari Province). PEC. 2022; 10(20): 185–206. ‎http://pec.gonbad.ac.ir/article-1-837-en.html
‎18. ‎ Janparvar H., Salarpour M., Pourmardan V. Estimation of economic benefits from carbon ‎sequestration in wheat fields of Sistan Plain. Sustain Agric Res. 2021; 1(2): 77–90. ‎https://doi.org/10.30495/sarj.2021.1926181.1003‎
‎19. ‎ Khatoony N., Kolahi M. Economic valuation of Arghavandareh forest’s ecosystem goods ‎and services. Iran J For Range Prot Res. 2022; 19(2): 297–325. ‎https://doi.org/10.22092/IJFRPR.2021.353039.1459‎
‎20. ‎ Brander L.M., de Groot R., Schägner J.P., Guisado-Goni V., van’t Hoff V., Solomonides ‎S, et al. Economic values for ecosystem services: A global synthesis and way forward. ‎Ecosyst Serv. 2024; 66: 101606. https://doi.org/10.1016/j.ecoser.2024.101606‎
‎21. ‎ Asadollahi Z., SalmanMahiny A. Assessing the Impact of Land Use Change on ‎Ecosystem Services Supply (Carbon Storage and Sequestration). Environmental ‎Reserches 8(15), 203-214. 2017. https://dorl.net/dor/20.1001.1.20089597.1396.8.15.24.0‎
‎22. ‎ Fadaei E., Mirsanjari M.M., Amiri M.J. Modeling of ecosystem services based on land ‎cover change and land use using InVEST software in Jahannama Conservation Area ‎‎(case: Carbon sequestration ecosystem service). T Ctry Plan. 2020; 12(1):153–73. ‎https://doi.org/10.22059/jtcp.2020.294342.670051‎
‎23. ‎ Jahandari J., Hejazi R., Jozi S.A., Moradi A. Impacts of urban expansion on spatio-‎temporal patterns of carbon storage ecosystem services in Bandar Abbas Watershed using ‎InVEST software. Water Soil Manag Model. 2022; 2(4): 91–106. ‎https://doi.org/10.22098/MMWS.2022.11069.1097‎
‎24. ‎ Adelisardou F., Jafari H.R., Malekmohammadi B., Minkina T., Zhao W., Karbassi A. ‎Impacts of land use and land cover change on the interactions among multiple soil-‎dependent ecosystem services (case study: Jiroft plain, Iran). Environ Geochem Health. ‎‎2021; 43(10): 3977–96. https://doi.org/10.1007/s10653-021-00875-5‎
‎25. ‎ ‎ Adelisardou F., Zhao W., Chow R., Mederly P., Minkina T, Schou JS. Spatiotemporal ‎change detection of carbon storage and sequestration in an arid ecosystem by integrating ‎Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. ‎‎2022; 19: 1–16. https://doi.org/10.1007/s13762-021-03676-6‎
‎26. ‎ Sharp R., Tallis H.T., Ricketts T., Guerry A.D., Wood S.A, Chaplin-Kramer R, et al. ‎InVEST user’s guide. The natural capital project. Nat Cap. 2014. ‎http://dx.doi.org/10.13140/RG.2.2.32693.78567‎
‎27. ‎ Erfani M., Jahanishakib F., Ardakani T. Habitat Quality Assessment Using InVEST ‎Model and its Valuation Through‎ Cost Compensation Method‎ in‎ Kerman‎ Province. Iran J ‎Appl Ecol. 2023; 12(2):11–23. http://ijae.iut.ac.ir/article-1-1167-en.html
‎28. ‎ Karra K., Kontgis C., Statman-Weil Z., Mazzariello J.C., Mathis M., Brumby S.P. Global ‎land use/land cover with Sentinel 2 and deep learning. In: 2021 IEEE international ‎geoscience and remote sensing symposium IGARSS. IEEE; 2021. p. 4704–7. ‎https://doi.org/10.1109/IGARSS47720.2021.9553499‎
‎29. ‎ Nowak D.J., Hoehn R., Crane D.E. Oxygen production by urban trees in the United ‎States. Arboric Urban For. 2007; 33(3): 220-226. ‎https://www.nrs.fs.usda.gov/pubs/jrnl/2007/nrs_2007_nowak_001.pdf
‎30. ‎ Interagency Working Group on the SC-GHG (IWG). Technical Support Document: ‎Social Cost of Carbon, Methane, and Nitrous ‎Oxide, Interim Estimates ‎under Executive ‎Order 13990‎. 2021. https://downloads.regulations.gov/EERE-2014-BT-STD-0059-‎‎0051/attachment_5.pdf‎
‎31. ‎ Olfati F., Mosleh A.A., Azimzadeh H.R. Estimating carbon sequestration in Pistacia ‎atlantica, Acer monspessulanum, Amygdalus scoparia, ‎and Ephedra procera in the ‎protected area of bagh-e shadi herat in yazd province. plant Ecosyst. 2013; 9(36): 65–75. ‎https://www.sid.ir/fileserver/jf/23313923606.pdf
‎32. ‎ Ghanbarian G.A., Hassanli A., Rajabi V. Comparing potential carbon sequestration of ‎different parts of mountain almond and grape plants and soil in Fars province. J Nat ‎Environ. 2015; 68(2): 257–65. https://doi.org/10.22059/jne.2015.54953‎
‎33. ‎ Farhadi M. Determining the carbon sequestration potential in the natural and hand-‎planted mass of Amygdalus ‎scoparia spach ‎. Sari University of Agricultural Sciences and ‎Natural Resources‎; 2012. ‎https://ganj.irandoc.ac.ir/viewer/fetch_pdf?uuid=fccf35b57a030f883e33390da500c1ff#pdfjs.action=download
‎34. ‎ Joneidi H., Chahouki Z., Azarnivand H., Sadeghipour A. Effect of Haloxylon ‎ammodendron and Pistachia Vera plantation on carbon and nitrogen storage in Artemisia ‎sieberi shrubland of Semnan province. J Arid Biome. 2011; 1(4): 15–25. ‎https://dorl.net/dor/20.1001.1.2008790.1390.1.4.2.6‎
‎35. ‎ Jariyani M., Poyafar A., Mohammadkhan S. Collection of articles of the first national ‎conference of Haloxylon and Haloxylon plantation in Iran‎. Kerman: Rah-e-Sobhan; 2013. ‎‎352 p. ‎
‎36. ‎ Abdi N. The potential of plant types along the playas of Iran from the point of view of ‎carbon sequestration‎. In: ‎2nd national conference on combating desertification and ‎sustainable development of Iran Desert ‎Wetlands (Relying on Meighan Desert Wetland)‎. ‎Arak: slamic Azad University Arak Branch; 2013. https://civilica.com/doc/156360‎
‎37. ‎ Ghorbanian D., Zandi Esfahan E., Amirjan M., Nejatian A. Evaluation of carbon ‎sequestration potential Suaeda fruticosa, Tamarix aphylla, Tamarix leptoptala and Alhagi ‎camelorum Species (Halophyte Species) andArtemisia sieberi (Non Halophyte Species). ‎Iran J Range Desert Res. 2022; 29(3):171–80. https://doi.org/10.22092/ijrdr.2022.127628‎
‎38. ‎ Ghamemi RaeiniNejad M., Sadeghi H. The evaluation of carbon sequestration at plant’s ‎organs and soil characteristics in understory of Zygophyllum atriplicoides and ‎Gymnocarpus decander (Case study: Saleh-Abad, Hormozgan). Iran J Range Desert Res. ‎‎2017; 24(4): 699–707. https://doi.org/10.22092/ijrdr.2017.114053‎
‎39. ‎ Bayranvand M., Kooch Y., Bahmani M. Variability analysis of soil carbon and nitrogen ‎storage under Prosopis cineraria, Calotropis procera and Ziziphus spinosa species in the ‎South of Kerman. J Arid Biome. 2019; 8(2): 91–101. ‎https://doi.org/10.29252/aridbiom.2019.1407‎
‎40. ‎ Ansari S., Sadeghi H. Carbon storage assessment in soil and plant organs: the role of ‎Prosopis spp. on mitigate soil degradation. Environ Monit Assess. 2022; 194(1):1–10. ‎https://doi.org/10.1007/s10661-021-09612-y
‎41. ‎ Forouzeh M.R., Heshmati GH.A, Ghanbarian GH.A, Mesbah S.H. Comparing carbon ‎sequestration potential of three shrub species Heliantemum lippii, Dendrostellera lessertii ‎and Artemisia sieberi (case study: Gareh Bygone, Fasa). Journal of Environmental ‎Studies 2008; 34(46): 65-72. https://dorl.net/dor/20.1001.1.10258620.1387.34.46.7.2‎
‎42. ‎ Mirzaei Bahlouli H. Investigating and comparing the carbon sequestration capability of ‎Hammada Salicornica and Sedlitzia ‎rosmarinus plants in the desert pastures of Khosuf‎. ‎University of Birjand; 2020. https://ganj.irandoc.ac.ir/23281618-67b6-427a-9ae6-‎‎5c1bef18f06a‎
‎43. ‎ Sadeghi M., Ajorlo M., Shahriari A. Comparison of plant litter quality in three range ‎plant species and its relationship with soil characteristics. J Water Soil Conserv. 2019; ‎‎26(1):‎‏ ‏‎205–18. https://doi.org/10.22069/jwsc.2019.15281.3050‎
‎44. ‎ Ahmadi H., Heshmati G., Naseri H. Soil carbon sequestration potential in desert lands ‎affected two species of Haloxylon aphyllum and Stipagrostis plumosa (Aran-o-Bidgol, ‎Iran). Desert Ecosyst Eng. 2022;‎‏ ‏‎3(5):‎‏ ‏‎29–36. ‎https://deej.kashanu.ac.ir/article_112521.html?lang=en
‎45. ‎ Mirtalebi A., Gaikani S., Abdi N. Comparison of soil organic carbon content in the use of ‎rangelands and hand-planted pasture with ‎Atriplex canescens species in the northern edge ‎of Meighan desert‎. In: ‎3rd national conference on combating desertification and ‎sustainable development of Iran Desert ‎Wetlands (Relying on Meighan Desert) ‎. Arak: ‎Islamic Azad University Arak Branch; 2013. https://civilica.com/doc/223186‎
‎46. ‎ Gholami H., Azarnivand H., Biniaz M. Study and comparison of the carbon sequestration ‎by Atriplex canescens and Hulthemia persica in Nowdahak range research station, ‎Qazvin province. J Environ Eros Res. 2014; 4(2): 40–52. ‎http://dorl.net/dor/20.1001.1.22517812.1393.4.2.6.7‎
‎47. ‎ Naghipour B.‎, Haidarian A.M., Nasri M. An investigation of carbon sequestration and ‎plant biomass in modified rangeland communities (Case study: Sisab rangelands of ‎Bojnord). Pajouhesh & Sazandegi 2012; 25(1): 19–26. http://agris.fao.org/agris-‎search/search.do?recordID=IR2012002041‎
‎48. ‎ Kolahchi N., Zahedi A.GH., Khorasani N. Carbon sequestration in shrubs, perennial ‎grasses and soil in closed range (Heidare) of Hamedan. Pajouhesh & Sazandegi 2008; 80: ‎‎18-25. https://www.sid.ir/FileServer/JF/56013878025‎
‎49. ‎ Azad B., Afzali S.F. Evaluation of two soil carbon models performance using measured ‎data in semi-arid rangelands of Bajgah, Fars province. Iran J Soil Water Res. ‎‎2019;50(4):819–35. https://doi.org/10.22059/ijswr.2018.264873.668001‎
‎50. ‎ Kusi K.K., Khattabi A, Mhammdi N, Lahssini S. Prospective evaluation of the impact of ‎land use change on ecosystem services in the Ourika watershed, Morocco. Land use ‎policy 2020; 97:104796. https://doi.org/10.1016/j.landusepol.2020.104796‎
‎51. ‎ Cademus R., Escobedo F.J., McLaughlin D., Abd-Elrahman A. Analyzing trade-offs, ‎synergies, and drivers among timber production, carbon sequestration, and water yield in ‎Pinus elliotii forests in southeastern USA. Forests 2014;5(6):1409–31. ‎https://doi.org/10.3390/f5061409‎
‎52. ‎ Ghoreyshi R., Motamedi J., Sheidai Karkaj E. Estimating economic value of carbon ‎sequestration services in rangelands with replacement cost method (Case study: Khoy ‎Dizaj Batchy rangeland). Environ Sci. 2014;12(2). ‎https://envs.sbu.ac.ir/article_97240.html?lang=en
‎53. ‎ Rahimi L., Malekmohammadi B., Yavari A.R. The Ecosystem Services Assessment of ‎Wetlands Based on the Classification of Hydrological-Ecological Structures and ‎Functions (Case Study: Shadegan Wetland). Geogr Environ Sustain. 2019; 9(1):51–72. ‎https://doi.org/10.22126/ges.2019.1063‎