Influence of MLSS Concentration and Aspergillus niger on Microbial Fuel Cell Performance and Wastewater Treatment Efficiency

Document Type : Original Research

Authors
1 Hakim Sabzevari University
2 Lorestan University
3 Michigan Technology Co., Ltd, Techno B-502, Ulsan Technopark, Jonggaro 15, Junggu, Ulsan 44412, South Korea
4 Professor at School of Engineering and Built Environment, Griffith University, Nathan, Australia
Abstract
Aims: In this study, we evaluated the performance of direct microbial fuel cells using citric acid wastewater as a substrate under different concentrations of MLSS 1000 mg.L-1 and 3000 mg.L-1.

Materials & Methods: Aspergillus niger yeast was used as a microorganism over 4 days and nights of this experiment. A Nafion membrane was used for proton transfer, and graphite plates were used for electron transfer. COD removal efficiency, maximum open circuit voltage, power, and current density were evaluated.

Findings: The general trend of energy production and removal efficiency showed that energy production increased with increasing MLSS. The maximum of these variables was recorded for MLSS of 3000 mg.L-1, achieving a removal efficiency of 93%, an open circuit voltage of 500 mV, and power and current density of 24345 µW.m-2 and 444 mA.m-2, respectively.

Conclusion: Our results showed that the designed MFC suits wastewater treatment and energy recovery.
Keywords

Subjects


1. Selvasembian R., Mal J., Rani R., Sinha R., Agrahari R., Joshua I., Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Bioresour. Technol. 2022; 346: 126462. https://doi.org/10.1016/j.biortech.2021.126462
2. Meylani V., Surahman E., Fudholi A., Almalki W.H., Ilyas N., Sayyed R.Z.. Biodiversity in microbial fuel cells: Review of a promising technology for wastewater treatment. J. Environ. Chem. Eng. 2023; 11(2): 109503. https://doi.org/10.1016/j.jece.2023.109503
3. Hassan M., Kanwal S., Singh R.S., Ali S.A.M., Anwar M., Zhao C.. Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment. Int. J. Hydrogen. Energy. 2024; 50: 323–50.
https://doi.org/10.1016/j.ijhydene.2023.08.134
4. Esfandyari M., Voltage control of Two-chamber microbial fuel using classical PI and MPC controller. J. Appl. Res. Chem. Eng. 2019; 3(2): 43–53. http://arcpe.modares.ac.ir/article-38-29973-en.html
5. Amanze C., Zheng X., Man M., Yu Z., Ai C., Wu X., Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ. Res. 2022; 205: 112467. https://doi.org/10.1016/j.envres.2021.112467
6. Gebretsadik H., Gebrekidan A., Demlie L., Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis : An alternate low cost adsorbent . Cogent. Chem. 2020; 6(1): 1720892.
https://doi.org/10.1080/23312009.2020.1720892
7. Dutta D., Arya S., Kumar S., Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere. 2021; 285: 131245. https://doi.org/10.1016/j.chemosphere.2021.131245
8. Saran C., Purchase D., Saratale G.D., Saratale R.G., Romanholo Ferreira LF, Bilal M, et al. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere. 2023; 312: 137072. https://doi.org/10.1016/j.chemosphere.2022.137072
9. Lim S.S., Fontmorin J.M., Pham H.T., Milner E., Abdul P.M., Scott K., Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Sci. Total. Environ. 2021; 776: 145934. https://doi.org/10.1016/j.scitotenv.2021.145934
10. Mohamed H.O., Sayed E.T., Cho H., Park M., Obaid M., Kim H.Y., Effective strategies for anode surface modification for power harvesting and industrial wastewater treatment using microbial fuel cells. J. Environ. Manage. 2018; 206: 228–35. https://doi.org/10.1016/j.jenvman.2017.10.022
11. Hernández-Flores G., Poggi-Varaldo H.M., Solorza-Feria O., Ponce-Noyola M.T., Romero-Castañón T., Rinderknecht-Seijas N., Characteristics of a single chamber microbial fuel cell equipped with a low cost membrane. Int. J. Hydrogen. Energy. 2015; 40(48): 17380–7.
https://doi.org/10.1016/j.ijhydene.2015.10.024
12. Huang L., Li X., Ren Y., Wang X., In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int. J. Hydrogen. Energy. 2016;.41(26):.11369–79.
https://doi.org/10.1016/j.ijhydene.2016.05.048
13. Kiaeenajad A., Moqtaderi H., Mahmoodi N.M., Maerufi S.M., Design and Construction of a Microbial Fuel Cell for Electricity Generation from Municipal Wastewater Using Industrial Vinasse as Substrate. Modares, Mech, Eng. 2020; 20(9): 2403–12. http://mme.modares.ac.ir/article-15-38562-en.html
14. Cecconet D., Molognoni D., Callegari A., Capodaglio A.G., Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues. Int J. Hydrogen. Energy. 2018;.43(1):.500–11.
https://doi.org/10.1016/j.ijhydene.2017.07.231
15. Firdous S., Jin W., Shahid N., Bhatti Z.A., Iqbal A., Abbasi U., The performance of microbial fuel cells treating vegetable oil industrial wastewater. Environ. Technol. Innov. 2018;.10:.143–51. https://doi.org/10.1016/j.eti.2018.02.006
16. Aelterman P., Rabaey K., Pham H.T, Boon N., Verstraete W., Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006; 40(10): 3388–94. https://doi.org/10.1021/es0525511
17. Bhande R., Noori M.T., Ghangrekar M.M., Performance improvement of sediment microbial fuel cell by enriching the sediment with cellulose: Kinetics of cellulose degradation. Environ. Technol. Innov. 2019;.13: 189–96. https://doi.org/10.1016/j.eti.2018.11.003
18. Choudhury P., Prasad Uday U.S., Bandyopadhyay T.K., Ray R.N., Bhunia B., Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered. 2017; 8(5): 471–87. https://doi.org/10.1080/21655979.2016.1267883
19. Jamal M.T., Pugazhendi A., Jeyakumar R.B., Application of halophiles in air cathode MFC for seafood industrial wastewater treatment and energy production under high saline condition. Environ. Technol. Innov. 2020; 20: 101119. https://doi.org/10.1016/j.eti.2020.101119
20. Kloch M., Toczylowska-Maminska R., Toward optimization of wood industry wastewater treatment in microbial fuel cells-mixed wastewaters approach. Energies. 2020; 13(1): 263. https://doi.org/10.3390/en13010263
21. Mohamed H.O., Obaid M., Sayed E.T., Liu Y., Lee J., Park M., Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode. Bioprocess. Biosyst. Eng. 2017; 40(8): 1151–61. https://doi.org/10.1007/s00449-017-1776-0
22. Kaewkannetra P., Chiwes W., Chiu T.Y., Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel. 2011; 90(8): 2746–50. https://doi.org/10.1016/j.fuel.2011.03.031
23. Abbasi U., Jin W., Pervez A., Bhatti Z.A., Tariq M., Shaheen S., Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants. Bioresour. Technol. 2016; 200: 1–7.
https://doi.org/10.1016/j.biortech.2015.09.088
24. Nimje V.R., Chen C.Y., Chen H.R., Chen C.C., Huang Y.M., Tseng M.J., Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresour. Technol. 2012; 104: 315–23. https://doi.org/10.1016/j.biortech.2011.09.129
25. Karuppiah T., Uthirakrishnan U., Sivakumar S.V., Authilingam S., Arun J., Sivaramakrishnan R., Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. Int. J. Hydrogen. Energy. 2022;.47(88):.37569–76. https://doi.org/10.1016/j.ijhydene.2021.06.034
26. Abubackar H.N, Biryol İ., Ayol A., Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations. Int. J. Hydrogen. Energy. 2023; 48(33): 12424–32.
https://doi.org/10.1016/j.ijhydene.2022.05.277
27. Zhang X., Liu Y., Zheng L., Zhang Q., Li C., Simultaneous degradation of high concentration of citric acid coupled with electricity generation in dual-chamber microbial fuel cell. J.Biochem. Eng. 2021; 173: 108095. https://doi.org/10.1016/j.bej.2021.108095
28. Soccol C.R, Vandenberghe L.P.S., Rodrigues C., Pandey A., New perspectives for citric acid production and application. Food. Technol. Biotechnol. 2006; 44(2): 141–9. https://hrcak.srce.hr/109832
29. Angumeenal A.R, Venkappayya D., An overview of citric acid production. LWT-Food. Sci. Technol. 2013; 50(2): 367–70.
https://doi.org/10.1016/j.lwt.2012.05.016
30. Vandenberghe L.P.S, Soccol C.R., Pandey A., Lebeault J.M., Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour. Technol. 2000; 74(2): 175–8. https://doi.org/10.1016/S0960-8524(99)00107-8
31. Papagianni M., Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007; 25(3): 244–63. https://doi.org/10.1016/j.biotechadv.2007.01.002
32. Mustakeem M., Electrode materials for microbial fuel cells: Nanomaterial approach. Mater. Renew. Sustain. Energy. 2015;.4(4):.1–11. https://doi.org/10.1007/s40243-015-0063-8
33. Gil G.C., Chang I.S., Kim B.H., Kim M., Jang J.K., Park H.S., Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003; 18(4): 327–34. https://doi.org/10.1016/S0956-5663(02)00110-0
34. Fazli N., Mutamim N.S.A., Jafri N.M.A., Ramli N.A.M., Microbial fuel cell (MFC) in treating spent caustic wastewater: varies in hydraulic retention time (HRT) and mixed liquor suspended solid (MLSS). J. Environ. Chem. Eng. 2018; 6(4): 4339–46. https://doi.org/10.1016/j.jece.2018.05.059
35. Raad N.K., Farrokhi F., Mousavi S.A., Darvishi P., Mahmoudi A., Simultaneous power generation and sewage sludge stabilization using an air cathode-MFCs. Biomass and Bioenergy. 2020; 140: 105642.
https://doi.org/10.1016/j.biombioe.2020.105642
36. Fazli N., Mutamim N.S.A., Rahim S.A., Bioelectrochemical Cell (BeCC) integrated with granular activated carbon (GAC) in treating spent caustic wastewater: Effects of solid retention time (SRT) and organic loading rate (OLR). In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2020. p. 72010. https://doi.org/10.1080/21655979.2016.1267883
37. Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V., Bahrami K., Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process. Energy. 2017; 141: 1350–62. https://doi.org/10.1016/j.energy.2017.11.057
38. Xiao B., Yang F., Liu J., Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. J. Hazard. Mater. 2011; 189(1–2): 444–9. https://doi.org/10.1016/j.jhazmat.2011.02.058
39. Birjandi N., Younesi H., Ghoreyshi A.A., Rahimnejad M., Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. J. Environ. Manage. 2016; 180:390–400. https://doi.org/10.1016/j.jenvman.2016.05.073
40. Ge Z., Zhang F., Grimaud J., Hurst J., He Z., Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour. Technol. 2013; 136: 509–14. https://doi.org/10.1016/j.biortech.2013.03.016
41. Wang J., Zheng Y., Jia H., Zhang H., Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: Effects of operation parameters performing a microbial fuel cell-based biosensor for tubular membrane bioreactor. Bioresour. Technol. 2014; 170: 483–90. https://doi.org/10.1016/j.biortech.2014.08.033
42. Radjenović J., Matošić M., Mijatović I., Petrović M., Barceló D. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. Emerg Contam from Ind Munic Waste Remov. Technol. 2008; 37–101.
http://dx.doi.org/10.1007/698_5_093
43. Mutamim N.S.A, Noor Z.Z., Assessment of membrane bioreactor in treating spent sulfidic caustic wastewater: effects of organic biomass concentration and solid retention time. Chem. Eng. Res .Bull. 2017; 19: 102–10. http://dx.doi.org/10.3329/cerb.v19i0.33803
44. Alattabi A.W., Harris C.B., Alkhaddar R.M., Ortoneda-Pedrola M., Alzeyadi A.T. An investigation into the effect of MLSS on the effluent quality and sludge settleability in an aerobic-anoxic sequencing batch reactor (AASBR). J Water Process. Eng. 2019;.30:.100479. https://doi.org/10.1016/j.jwpe.2017.08.017
45. Ali J., Wang L., Waseem H., Djellabi R., Oladoja N.A., Pan G., FeS@rGO nanocomposites as electrocatalysts for enhanced chromium removal and clean energy generation by microbial fuel cell. J. Chem. Eng. 2020; 384: 123335. https://doi.org/10.1016/j.cej.2019.123335
46. Chen B.Y., Zhang M.M., Chang C.T., Ding Y., Lin K.L., Chiou C.S., Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour. Technol. 2010; 101(12): 4737–41.
https://doi.org/10.1016/j.biortech.2010.01.133
47. Wei J., Liang P., Huang X., Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011; 102(20): 9335–44. https://doi.org/10.1016/j.biortech.2011.07.019
48. Xafenias N., Zhang Y., Banks C.J., Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ. Sci. Technol. 2013; 47(9): 4512–20. https://doi.org/10.1021/es304606u
49. Wu D., Xing D., Lu L., Wei M., Liu B., Ren N., Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour. Technol. 2013; 135: 630–4. https://doi.org/10.1016/j.biortech.2012.09.106
50. Fernando E., Keshavarz T., Kyazze G., Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour. Technol. 2014; 156: 155–62. https://doi.org/10.1016/j.biortech.2014.01.036
51. Xiao L., Damien J., Luo J., Jang H.D., Huang J., He Z., Crumpled graphene particles for microbial fuel cell electrodes. J. Power. Sources. 2012; 208:187–92. https://doi.org/10.1016/j.jpowsour.2012.02.036
52. Ya-li F., Wei-da W., Xin-hua T., Hao-ran L., Zhuwei D., Zhi-chao Y., Isolation and characterization of an electrochemically active and cyanide-degrading bacterium isolated from a microbial fuel cell. RSC. Adv. 2014; 4(69): 36458–63. https://doi.org/10.1039/C4RA04090B
53. Qiao Y., Wen G.Y., Wu X.S., Zou L., l -Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells . RSC. Adv. 2015; 5(72): 58921–7. https://doi.org/10.1039/C5RA09170E
54. Sulonen M.L.K., Kokko M.E., Lakaniemi A.M., Puhakka J.A., Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard. Mater. 2015;284:182–9. https://doi.org/10.1016/j.jhazmat.2014.10.045
55. Chen B.Y., Ma C.M., Han K., Yueh P.L., Qin L.J., Hsueh C.C., Influence of textile dye and decolorized metabolites on microbial fuel cell-assisted bioremediation. Bioresour. Technol. 2016; 200: 1033–8. https://doi.org/10.1016/j.biortech.2015.10.011
56. Birjandi N., Younesi H., Ghoreyshi A.A., Rahimnejad M., Electricity generation, ethanol fermentation and enhanced glucose degradation in a bio‐electro‐Fenton system driven by a microbial fuel cell. J. Chem. Technol. Biotechnol. 2016; 91(6): 1868–76. https://doi.org/10.1002/jctb.4780