Assessing the Impact of Spatial Accuracy of Digital Elevation Models on Simulating Discharge in Arid Regions Using SWAT Model: A Case Study of the Lar Watershed

Document Type : Original Research

Authors
1 Former M.Sc. Student of Watershed Management, Department of Rangeland and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran
2 Assistant professor, Department of Rangeland and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran
3 Associate professor, Department of Rangeland and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran
4 Department of Combat Desertification, Desert Studies Faculty, Semnan University, Semnan, Iran
Abstract
Aims: The Digital Elevation Model (DEM) plays a crucial role in the SWAT model and significantly impacts its output results. This study evaluated the effect of different spatial accuracy of DEM in runoff simulation using the SWAT and SWAT-CUP models for the Lar Watershed in Sistan and Baluchestan Province.

Materials & Methods: This study examines the impact of different accuracies of Digital Elevation Models (DEMs) with resolutions of 12.5, 30, 50, 90, 450, and 1000-meters on discharge simulation using the SWAT model for the Lar Watershed, located in an arid region. The model was selected for 30 years (1988-2017), with 18 years for the calibration period and 12 years for validation. The SWAT-CUP software and the SUFI-2 method were used. The model’s accuracy was also evaluated using the Nash-Sutcliffe efficiency (NS), coefficient of determination (R²), r, and p coefficients.

Findings: The discharge simulation results reveal that variables such as area, sub-basin, Hydrologic Response Unit (HRU), watershed slope, and mean channel slope are particularly affected by DEM accuracy. With increasing DEM accuracy, the length of the main channels decreases, and lower-order channels are eliminated, reducing the calculated discharge depth. Our sensitivity analysis identified seven key parameters influencing discharge simulation in the Lar Watershed. The most critical parameters were r__CN2.mgt, v__ALpha_BF.gw, and r__SOL_AWC.sol, consistently recognized as highly sensitive in similar studies.

Conclusion: During validation and calibration, DEM resolutions of 12.5 and 1000 meters exhibited lower accuracy than those of 30, 50, 90, and 450 meters, suggesting that extremely high or low spatial data accuracy does not enhance simulation accuracy. Additionally, minimal differences were observed among the results for DEM resolutions of 30, 50, 90, and 450 meters. This can be attributed to adjustments in calibrated variable values and the application of the SUFI-2 method across different DEM accuracies. Finally, based on the results of this research, the DEMs with spatial resolutions of 30, 12.5, 50, 90, 450, and 1000 meters demonstrated the best performance for simulating monthly discharge in the Lar Watershed. Additionally, based on the value of the objective function (NS) during the calibration and validation stages, it can be concluded that the SWAT model can simulate the monthly discharge of the Lar Watershed with acceptable accuracy. Therefore, it can be said that the SWAT hydrological model can be used in arid regions to implement management scenarios quickly and at a low cost for decision-making.
Keywords

Subjects


1. Astagneau P.C., Thirel G., Delaigue O., Guillaume J.H., Parajka J., Brauer C.C., Beven K.J. Hydrology Modelling R Packages: a Unified Analysis of Models and Practicalities From a User Perspective. Hydrol Earth Sist Sci. 2021; 25(7): 3937–3973. [https://hess.copernicus.org/articles/25/3937/2021/%5d] [https://doi.org/10.5194/hess-25-3937-2021]
2. Mokhtari Porzarandi F. Presentation of Digital methods for Extraction of Waterways in Arid and Semi-Arid Areas (Case Study: Khezr Abad Region, Yazd Province). M.Sc. Thesis on Desert Management and Control. Faculty of Agriculture and Natural Resources, University of Ardakan. 2015. (In Persian). http://lib.ardakan.ac.ir/inventory/3/101.htm
3. Dutta P., Sarma A.K. Hydrological Modeling as a Tool for Water Resources Management of the Data-Scarce Brahmaputra Basin. J. Water Clim. Change. 2021; 12(1): 152–165. https://iwaponline.com/jwcc/article/12/1/152/73209/Hydrological-modeling-as-a-tool-for-water https://doi.org/10.2166/wcc.2020.186
4. Kalumba M., Nyirenda E. River Flow Availability for Environmental Flow Allocation Downstream of Hydropower Facilities in the Kafue Basin of Zambia. Phys. Chem. Earth. 2017; 102: 21-30. https://www.sciencedirect.com/science/article/abs/pii/S1474706516300213?via%3Dihub https://doi.org/10.1016/j.pce.2017.07.003
5. Norouzi Nazar M, Asgari E, Baaghideh M, Lotfi S. Quantifying the Long-Term Flood Regulation Ecosystem Service under Climate Change Using SWAT Model. ECOPERSIA 2020;8-(3):169-180. http://dorl.net/dor/20.1001.1.23222700.2020.8.3.3.6
6. Refahi H. Water Erosion and its Control. 7th edition. Tehran University Press. 2014; 7. 672 p. (In Persian). https://ajansbook.ir/%DA%A9%D8%AA%D8%A7%D8%A8-%D9%81%D8%B1%D8%B3%D8%A7%DB%8C%D8%B4-%D8%A2%D8%A8%DB%8C-%D9%88-%DA%A9%D9%86%D8%AA%D8%B1%D9%84-%D8%A2%D9%86
7. Khosravi S.A., Mir Yagoub Zadeh M.H. Simulation of river flow based on SWAT physical model in Barandozchai watershed of Urmia Lake. Journal of Watershed Management Research, 2019; 11(22): 31-42. (In Persian). http://dorl.net/dor/20.1001.1.22516174.1399.11.22.17.3 http://dx.doi.org/10.52547/jwmr.11.22.31
8. Mokhtari F., Honrabakhsh A., Soltani S., Abdulahi Kh., Pajuohesh M. Runoff simulation in Karkheh watershed using SWAT model. Seventh Comprehensive Conference on Flood Management and Engineering, Tehran. Iran, 2019. (In Persian). https://civilica.com/doc/1035452/
9. Rezaei Moghadam M.H., Hajazi M.A., Behbodi A. Estimating the Amount of Runoff in the Lenbaran Chai Catchment Area in East Azarbaijan Province: Comparative Application of Calibration Methods and Uncertainty Analysis of The SWAT Model. J. Geogr. Environ. Hazard. 2018; 31: 75-59. (In Persian). https://dorl.net/dor/20.1001.1.23221682.1398.8.3.4.9 https://doi.org/10.22067/geo.v8i3.81998
10. Sanjay Shekar N.C., Vinay D.C. Performance of HEC-HMS and SWAT to Simulate Streamflow in the Sub-Humid Tropical Hemavathi Catchment. J. Water Clim. Change. 2021; 12(7): 3005–3017. https://iwaponline.com/jwcc/article/12/7/3005/83375/Performance-of-HEC-HMS-and-SWAT-to-simulate https://dorl.net/dor/20.1001.1.23221682.1398.8.3.4.9
11. Tyagi J.V., Rai S.P., Qaz N., Singh M.P. Assessment of Discharge and Sediment Transport from Different Forest Cover Types in Lower Himalaya Using Soil and Water Assessment Tool (SWAT). Int. J. Water Res. Environ. Eng. 2014; 6: 49-66. http://www.academicjournals.org/IJWREE DOI:10.5897/IJWREE2013.0448
12. Aslam H., Andrew L. SWAT modeling of hydrology, sediment and nutrients from the Grand River, Ontario. Water Qual. Res. J. 2017; 52(4): 243-257. [https://iwaponline.com/wqrj/article/52/4/243/38165/SWAT-modeling-of-hydrology-sediment-and-nutrients] [https://doi.org/10.2166/wqrj.2017.014]
13. Nossent J. Sensitivity and Uncertainty Analysis in View of the Parameter Estimation of a SWAT model of the River Kleine Nete, Belgium. Dep. Hydrol. Eng. Vrije Univ. Brussel )VUB), 2012. https://www.researchgate.net/publication/284365164_Sensitivity_and_uncertainty_analysis_in_view_of_the_parameter_estimation_of_a_SWAT_model_of_the_River_Kleine_Nete_Belgium
14. Peipei Z., Ruimin L., Yimeng B., Jiawei W., Wenwen Y., Zhenyao S. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res. 2014; 53(1): 132-144. https://www.sciencedirect.com/science/article/abs/pii/S0043135414000451?via%3Dihub https://doi.org/10.1016/j.watres.2014.01.018
15. Raju B.K., Nandagiri L. Assessment of Variable Source Area Hydrological Models in Humid Tropical Watersheds. Intl. J. River Basin Management. 2018; 16(2): 145–156. https://www.iahr.org/library/infor?pid=18083 https://doi.org/10.1080/15715124.2017.1372446
16. Raeisi A., Talebi A., Abdollahi K., Torabi Haghighi A. Effective Factors on Runoff Generation and Hydrologic Sensitivity in a Mountainous Watersheds (A Case Study: Farsan Watershed, Upstream of Karoun River). ECOPERSIA 2020; 8 (1):15-21. http://dorl.net/dor/20.1001.1.23222700.2020.8.1.1.0
17. Abbaspour K.C., Rouholahnejad E., Vaghifi S., Srinivasan R., Yang H., Klove B. Acontinental-Scale Hydrology and Water Quality Model For Europe: Calibration and Uncertainty of High-Resolution Larg-Scale SWAT Model. J. Hydrol. 2015; 524: 733-752. [https://www.sciencedirect.com/science/article/pii/S0022169415001985] [https://doi.org/10.1016/j.jhydrol.2015.03.027]
18. Fatehi Z., Shahoei S.V. Application of SWAT Model For Simulating Monthly Runoff, Lake Urmia Watershed in Kurdistan Province, Iran. Environ. Water Eng. 2020; 6(3): 295–305. (In Persian). https://www.jewe.ir/article_109289.html https://doi.org/10.22034/jewe.2020.218842.1346
19. Ghezelsofloo A., Hajibigloo M., Eftekhari M., Mahmoodizadeh S., Akbari M., Eslaminezhad S.A. Simulation of runoff from Atrak River Basin Iran using SWAT model. J. Soil Environ. 2022; 41(1): 33-45. https://www.researchgate.net/publication/360978423_Simulation_of_runoff_from_Atrak_River_Basin_Iran_using_SWAT_model_A_case_study http://dx.doi.org/10.25252/SE/2022/222697
20. Hancock G.R. The use of DEMs in the Identification and Characterization of Catchment Over Different Grid Scales. Hydrol. Process. 2005 19: 1727–1749. https://onlinelibrary.wiley.com/doi/10.1002/hyp.5632 https://doi.org/10.1002/hyp.5632
21. Lucas M., Marcelo R., Marx L., Diego F.A., Nilton C. Hydrological Modeling of Tributaries of Cantareira System Southeast Brazil With the SWAT Model. J. Braz. Assoc. Agric. Eng. 2016; 1037-1049. https://www.scielo.br/j/eagri/a/qxBgQG5nPJNVtLJsG4TmhNH/?lang=en https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1037-1049/2016
22. Liu J., Yuan D., Zhang L., Zou X., Song X. Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian model averaging, China. Adv. Meteorol. 2016; 1 (1): 1-12. https://onlinelibrary.wiley.com/doi/10.1155/2016/7463963 https://doi.org/10.1155/2016/7463963
23. Rostamian R., Jaleh A., Afyuni M., Farhad S., Mousavi M., Heidarpour A., Jalalian H., Abbaspour K. Application of a SWAT model for estimating runoff and sediment in two mountainous Basins in central Iran. Hydrol. Sci. J. 2008; 53(5):977-988. https://www.tandfonline.com/doi/abs/10.1623/hysj.53.5.977 https://doi.org/10.1623/hysj.53.5.977
24. Safavi M., Mustafaei A., Molai Nia M.R. Use of SWAT model in simulation of runoff in Karkheh catchment area. The First International Conference on Civil Engineering, New and Practical Findings, Shiraz, Iran, 2021. (In Persian). https://civilica.com/doc/1369915/
25. Fard R., Wafakhah M., Moradi H.R. Evaluating the Effect of the Spatial Accuracy of the Digital Height model on the Estimation of the Daily Discharge of the Arazkose Watershed Using the SWAT model. Jwmseir 2022; 16(56): 53-62. (In Persian). http://dorl.net/dor/20.1001.1.20089554.1401.16.56.6.3
26. Kavian A., Mohammadi M. Effects of Digital Elevation Models (DEM) Simulation. jwmr. 2019; 10(19): 36-45. http://dx.doi.org/10.29252/jwmr.10.19.36 http://dx.doi.org/10.29252/jwmr.10.19.36
27. Chaplot V. Impact of DEM Mesh Size and Soil Map Scale on SWAT Runoff, Sediment and NO3-N Load Prediction. J. Hydrol. 2005; 311: 59-79. [https://www.researchgate.net/publication/223484875_Impact_of_DEM_mesh_size_and_soil_map_scale_on_SWAT_runoff_sediment_and_NO3-N_loads_predictions] [http://dx.doi.org/10.1016/j.jhydrol.2005.02.017]
28. Alaei Y., Mofidi Chelan M., Sheidai Karka E. Local Community’s Attitude and Satisfaction Towards the Environmental Effectiveness of Urmia Lake Restoration Actions. ECOPERSIA 2024; 12(1): 1-12. [http://ecopersia.modares.ac.ir/article-24-70515-en.html] [doi:10.22034/ecopersia.12.1.1]
29. Chaubey I., Cotter A.S., Costello T.A., Soerens T.S. Effect of DEM Data Resolution on SWAT Output Uncertainty. Hydrol. Process. 2005; 19: 621–628. [http://www.interscience.wiley.com/] [doi:10.1002/hyp.5607]
30. Kiyani Majd M., Nahtani M., Dehmarde Ghaleno M.R. Investigating SPI and SDI Indicators of Zahedan Plain using R Software. 10th International Conference on Rain Catchment Surface Systems. Kordestan. Iran. 2021. (In Persian). https://civilica.com/doc/1411155/
31. Kiyani Majd M. Hydrological Simulation of Lar Watershed in Sistan and Baluchistan Province Using SWAT model. M.Sc. Thesis in watershed science and engineering, Faculty of Water and Soil, University of Zabol. 2022. (In Persian). https://ganj.irandoc.ac.ir/%23/articles/ec2a4adb7d92281ecca06af88b169acd
32. Kiyani Majd M., Nohtani M., Dehmardeh Ghaleh No M.R., Shikh Z. Simulating the Runoff of Watersheds in Dry Areas on A Monthly Scale using the SWAT Model (Case Study: Lar Watershed). J. Watershed Manag. Res. 2023; 14(27): 135-145. (In Persian). https://doi.org/10.61186/jwmr.14.27.135 http://dx.doi.org/10.61186/jwmr.14.27.135
33. Bandab consultants. The design of the flood management and control system, collection, channeling of Zahedan water of the General Directorate of Natural Resources of Sistan and Baluchistan. 2018; 50 p. (In Persian). https://bamahse.com/bandab.html
34. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. 1998. 34: 73–89. [https://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.1998.tb05961.x] [https://doi.org/10.1111/j.1752-1688.1998.tb05961.x]
35. Busche H.G.K. Modeling Hydrological Processes in a Semi-Arid Mountainous Catchment at the Regional Scale. Mathematics and Natural Sciences. PhD Thesis, Depart. Bonn university. 2012. [https://nbn-resolving.org/urn:nbn:de:hbz:5n-31731]
36. Li T., Gao Y. Runoff and Sediment Yield Variations in Response to Precipitation Changes (A Case Study: Xichuan Watershed in the Loess Plateau, China). J. Water. 2015; 7(10): 5638-5656. https://www.mdpi.com/2073-4441/7/10/5638 https://doi.org/10.3390/w7105638
37. Abbaspour K.C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrist J., Srinivasan R. Modeling Hydrology and Water Quality in the Pre-Alpine Thur Watershed Using SWAT. J. Hydrol. 2007; 333: 413-430. [https://www.sciencedirect.com/science/article/abs/pii/S0022169406004835] [https://doi.org/10.1016/j.jhydrol.2006.09.014]
38. Abbaspour K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology, eawag, Dübendorf, Switzerland. 2011; 103 p. [https://swat.tamu.edu/software/swat-cup/]
39. Salmani H., Rostami Khalaj M., Mohseni Sarvi M., Rouhani H., Salajgheh A. Optimizing parameters affecting rainfall-runoff in SWAT semi-distributive model (case study: Qazaghali watershed, Golestan province). Sci. Res. Q. Iran's Nat. Ecosyst. 2013; 3(2): 85-100. (In Persian). https://sid.ir/paper/215247/fa
40. Abbaspour K.C., Rouholahnejad E., Vaghifi S., Srinivasan R., Yang H., Klove B. Acontinental-Scale Hydrology and Water Quality Model For Europe: Calibration and Uncertainty of a High-Resolution Larg-Scale SWAT Model. J. Hydrol. 2015; 524: 733-752. [https://www.sciencedirect.com/science/article/pii/S0022169415001985] [https://doi.org/10.1016/j.jhydrol.2015.03.027]
41. Nash J.E., Sutcliffe J.V. River Flow Forecasting Through Conceptual Models. J. Hydrol. 1970; 10: 282-29. https://www.sciencedirect.com/science/article/abs/pii/0022169470902556?via%3Dihub https://doi.org/10.1016/0022-1694(70)90255-6
42. Sivasena Reddy A., Janga Reddy M. Evaluating the Influence of Spatial Resolutions of DEM on Watershed Runoff and Sediment Yield using SWAT. J. Earth Syst. Sci. 2015; 124(7): 1517-1529. https://link.springer.com/article/10.1007/s12040-015-0617-2
43. Ghafari G. The impact of DEM resolution on runoff and sediment modeling result. Res. J. Environ. Sci. 2011; 5(8): 691-702. https://scialert.net/abstract/?doi=rjes.2011.691.702 https://doi.org/10.3923/rjes.2011.691.702
44. Jeirani F., Morid S., Moridi A. Impact of DEM Cell Size on Calibration and Predictions of Runoff and Sediment, Using SWAT-CUP. Water Soil Conserv. 2011; 18(4): 81-101. (In Persian). https://dorl.net/dor/20.1001.1.23222069.1390.18.4.5.5
45. Lin S., Jing C., Chaplot V., Yu X., Zhang Z., Moore N., Wu J. Effect of DEM Resolution on SWAT Outputs of Runoff, Sediment and Nutrients. Hydrol Earth Sist Sci. 2010; 7: 4411–4435. https://hess.copernicus.org/preprints/hess-2010-152/ https://doi.org/10.5194/hessd-7-4411-2010
46. Dehvari A., Heck R.j. Effect of LiDAR Derived DEM Resolution on Terrain Attributes, Stream Characterization and Watershed Delineation. International. J. Agric. Crop Sci. 2013; (6)13:949-967. [https://www.cabidigitallibrary.org/doi/full/10.5555/20133420176]
47. Moradi A., Najafi Nejad A., Onough M., Kammaki Chogi B. Investigating the Effect of Digital Elevation Models on the Estimation of Discharge and Suspended Load Using SWAT model (Case Study: Galikash Watershed, Golestan Province). IJWMSE 2015; 1(11):62-75. (In Persian). https://jwem.areeo.ac.ir/article_118433.html https://doi.org/10.22092/ijwmse.2019.118433
48. Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Santhi C., Harmel R.D., Griensven a.Van., VanLiew M.W., Kannan N., Jha M.K. SWAT: Model Use, Calibration, and Validation. ASABE 2012. 55(4): 1491–1508. [https://swat.tamu.edu/publications/calibrationvalidation-publications/%5d]
49. Niraula N., Norman N.l., Meixner T., Callegary J. Multi-Gauge Calibration for Modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT. Air. Soil. Water Res. 2012; 5: 41–57. https://journals.sagepub.com/doi/10.4137/ASWR.S9410 https://journals.sagepub.com/doi/10.4137/ASWR.S9410
50. Rouholahnejad E., Abbaspour K.C., Srinivasan R., Bacu V., Lehmann A. Water Resources of the Black Sea Basin at High Spatial and Temporal Resolution. Water Resour Res. 2014; 7(50): 5866–5885. https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2013WR014132 https://doi.org/10.1002/2013WR014132
51. Rafael A., Silvio B., Daniel B.F. Calibration and Validation of the SWAT Hydrological Model for the Mucuri River Basin Call. J. Braz. Assoc. Agric. Eng. 2018; 55-63. https://www.scielo.br/j/eagri/a/63wmTKjz5NzFGm94LYPRpQN/?lang=en https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p55-63/2018
52. Zarif Kar M., Soltani S., Taze M., Sadeghi Nia M. Evaluation of the Effect of Using Digital SRTM Radar Elevation Models and Ground Maps on the Extraction of Physiographic Parameters of the Watershed (Case Study: Nahrin Dam Area, Tabas City). the Second National Congress of Modern Technologies of Iran With the Aim of Achieving Sustainable Development. University of Ardakan. Iran. 2014. (In Persian). https://civilica.com/doc/399584/
53. Wu Simon., Jonathan Li., Huang G.H. Characterization and Evaluation of Elevation Data Uncertainty in Water Resources Modeling with GIS. Water Resour Manage. 2008; 22: 959–972. Link http://dx.doi.org/10.1007/s11269-007-9204-x
54. Wang X., Lin Q. Effects of DEM mesh size on AnnAGNPS Simulation and Slope Correction. Environ Monit Assess. 2010; 179: 267-277. https://link.springer.com/article/10.1007/s10661-010-1734-7