Impact of Climate Change on The Habitat of the Eurasian Otter in the Southwest of Iran

Document Type : Original Research

Authors
1 Msc Student, Department of Environmental science, Faculty of Marine Natural Resource, Khorramshahr University of Marine science and technology, Khorramshahr, Iran
2 Asistant Professor, Department of Environmental Science, Faculty of Marine Natural Resource, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3 Associate professor, Department of environmental Science, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
4 Assistant professor, Department of Basic Sciences and General Courses, Faculty of Economics and Management, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
Abstract
Aims: This research examined climate change’s impact on the Eurasian otter’s habitat (Lutra lutra) in Khuzestan Province based on habitat modeling in R regarding climate scenarios and the MRI-ESM2-0 general circulation model.

Materials & Methods: 72 points were recorded, and ten climatic and environmental variables were used as inputs for the models. The ROC curve, TSS, and Kappa coefficient were used to assess model accuracy using three different methods.

Findings: In the ROC model, AUC 0.7–0.8 indicates a suitable model, AUC 0.8–0.9 indicates a robust model, and AUC > 0.9 indicates a powerful model. In the TSS model,> 0.75 indicates excellent diagnostic power, 0.4–0.75 indicates good, and < 0.4 indicates weak diagnostic power. The Kappa coefficient (0.39–0.98) shows good prediction accuracy. The RF and GBM were the best for determining the habitat of the Eurasian otter in Khuzestan Province. River distance, BIO1, and BIO3 had the most significant role in habitat suitability. A total of 9176.185 km² of Khuzestan Province was identified as a suitable habitat. The prediction of the species’ distribution changes based on SSP126, SSP370, and SSP585 showed that this species’ habitat would decrease until 2070.

Conclusion: Climate change significantly affects the distribution of the Eurasian otter. Similar to other studies on animal and plant species, it leads to habitat reduction and alterations in habitat ranges.
Keywords

Subjects


1. Cianfrani C., Le Lay G., Maiorano L., Satizábal H.F., Loy A., Guisan A. Adapting global conservation strategies to climate change at the European scale: the otter as a flagship species. Biol. Conserv. 2011; 144(8): 2068-2080. https://doi.org/10.1016/j.biocon.2011.03.027.
2. Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012; 15(4): 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x.
3. Ebrahimi A., Farashi A., Rashki A. Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environ. Earth Sci. 2017; 76:1-10. https://doi.org/10.1007/s12665-017-7040-8.
4. Karami, M., Mirzaei, I., Hamzehpour, M. Status Of Eurasian Otter (Lutra lutra) in Iran. IUCN Otter Spec. Group Bull. 2006: 23 (1): 27-33.
https://www.iucnosgbull.org/Volume23/Karami_et_al_2006.pdf
5. Ansari A. Habitat quality evaluation for the Eurasian Otter (Lutra lutra)(Class: Mammalia, Family: Mustelidae) in Markazi Province. J. Anim. Res. 2021; 34(2): 69-81. http://doi.org/20.1001.1.23832614.1400.34.2.5.4
6. Mirzaei R., Karami M., Danehkar A., Abdoli A. Study of otter (Lutra lutra) Distribution Along Jajrood River. Environ. Sci. 2008; 6 (2): 33-42.
https://envs.sbu.ac.ir/article_95549.html?lang=en
7. Eshagh Nimvari S., Naderi S., Mirzajani A. Investigating the presence and diet of otter (Lutra lutra) in the estuary region of eastern rivers of Guilan Province: Polrood, Khoshkrod and Acharod. J. Nat. Environ.. 2022; 75(4): 716-32.
http://doi.org/10.22059/jne.2022.341273.2420.
8. Masoodian S.A. Temperature trends in Iran during the last half century. Geo. Dev. 2004; 2(3): 89-106. http://doi.org/10.22111/gdij.2004.3831
9. Dayton G.H, Fitzgerald L.A. Habitat suitability models for desert amphibians. Biol. Conserv. 2006; 132(1): 40-49. https://doi.org/10.1016/j.biocon.2006.03.012
10. Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000; 135(2-3): 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
11. Rashidi P., Makmom A.A., Mahiny A.S., Moradi H.V., Firuz R.M., Amanollahi J., Tabrizi A.M., Shahbazi H. An overview of different modeling approaches to prediction of the likely effects of climate change on range shifts of species. Int. J. Phys. Sci. 2012; 7(12): 1878-83. https://doi.org/10.5897/IJPS12.033
12. Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J., Dai X., Maskell K., Johnson C. Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press. 2001. 881.
https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf
13. Archis J.N., Akcali C., Stuart B.L., Kikuchi D., Chunco A.J. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius). PeerJ. 2018; 6(1): 1-24. https://doi.org/10.7717/peerj.4647
14. Araújo M.B., New M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007; 22(1): 42-47. http://doi.org/10.1016/j.tree.2006.09.010
15. Kaddo J.R. Parkland College Climate Change: Causes, Effects, and Solutions. 2016. 165. https://www.academia.edu/35245975/Parkland_College_Climate_Change_Causes_Effects_and_Solutions
16. Potta S. Application of stochastic downscaling techniques to global climate model data for regional climate prediction. Louisiana State University and Agricultural & Mechanical College; 2004. 167.
https://repository.lsu.edu/cgi/viewcontent.cgi?article=1567&context=gradschool_theses
17. Nazmfar H., Alibakhshi A. Assess the spatial development of regional inequality Case study: the Khuzestan Province. Spat. Plan. 2014; 14(4). http://doi.org/20.1001.1.22287485.1393.4.3.6.4
18. Behroozi Rad B. Wetlands of Iran, National Geographical Organization Press. First Edition. 2008 812. (In persian)
19. Thuiller W., Lafourcade B., Engler R., Araújo M.B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 2009; 32(3): 369-73. https://doi.org/10.1111/j.1600-0587.2008.05742.x
20. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2024. 97. https://www.R-project.org
21. Woodman S.M., Forney K.A., Becker E.A., DeAngelis M.L., Hazen E.L., Palacios D.M., Redfern J.V. ESDM: A tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods. Ecol. Evol. 2019; 10: 1923–1933. https://doi.org/10.1111/2041-210X.13283
22. Václavík T., Meentemeyer R.K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 2012;18(1): 73-83. https://doi.org/10.1111/j.1472-4642.2011.00854.x
23. Simpson M., Prots B. Predicting the distribution of invasive plants in the Ukrainian Carpathians under climatic change and intensification of anthropogenic disturbances: implications for biodiversity conservation. Environ. Conserv. 2013; 40(2): 167-181. https://doi.org/10.1017/S037689291200032X
24. Marmion M., Luoto M., Heikkinen R.K., Thuiller W. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Model. 2009; 220(24): 3512-20. https://doi.org/10.1016/j.ecolmodel.2008.10.019
25. Kindt R. Ensemble species distribution modelling with transformed suitability values. Environ. Model. Softw. 2018; 100: 136-45. https://doi.org/10.1016/j.envsoft.2017.11.009
26. Allouche O., Tsoar A., Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006; 43(6): 1223-32. https://doi.org/10.1111/j.1365-2664.2006.01214.x
26. Shabani F., Kumar L., Ahmadi M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. GJHSS-B Geography. 2018; 18(1). 1-13. https://globaljournals.org/GJHSS_Volume18/2-Assessing-Accuracy-Methods.pdf
27. Haidarian M., Tamartash R., Jafarian-Jeloudar Z., Tarkesh M., Tataian M.R. The effects of climate change on the future distribution of Astragalus adscendens in central zagros, Iran. J. Rangel. 2021; 11(2): 152-170. DOI: http://dx.doi.org/10.22092/ijrdr.2013.3009
28. Ashrafzadeh M.R., Naghipour A.A., Haidarian M., Khorozyan I. Modeling the response of an endangered flagship predator to climate change in Iran. Mammal. Res. 2019; 64: 39-51. https://doi.org/10.1007/s13364-018-0384-y
29. Ashrafzadeh M.R, Naghipour A.A, Haidarian M., Kusza S., Pilliod D.S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global. Ecol. Conserv. 2019; 19: 1-13. https://doi.org/10.1016/j.gecco.2019.e00637
30. Bedia J., Herrera S., Gutiérrez J.M.. Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Global. Planet. Change. 2013; 107: 1-2. https://doi.org/10.1016/j.gloplacha.2013.04.005
30. Hirzel A. When GIS come to life. Linking landscape-and population ecology for large population management modelling: the case of Ibex (Capra ibex) in Switzerland. PhD Thesis, 2001. 114.
31. Pramanik M., Paudel U., Mondal B., Chakraborti S., Deb P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018; 19: 94-105. https://doi.org/10.1016/j.crm.2017.11.002
32. Olivier F., Wotherspoon S.J. Modelling habitat selection using presence-only data: Case study of a colonial hollow nesting bird, the snow petrel. Ecol. Model. 2006; 195(3-4): 187-204. https://doi.org/10.1016/j.ecolmodel.2005.10.036
34. Saavedra Bendito D. Reintroduction of the Eurasian otter (Lutra lutra) in Muga and Fluvià basins (north-eastern Spain): viability, development, monitoring and trends of the new population. PhD Thesis, Universitat de Girona; 2003. 290. http://hdl.handle.net/10256/4591
35. Kafash A., Kaboli M., Köhler G. Comparison effect of future climatic change on the desert and mountain dwelling reptiles in Iran (Paralaudakia caucasia and Saara loricata). J. Anim. Environ. Sci. 2015; 7(3):103-8. www.magiran.com/p1483456
36. Pedroso N.M., Marques T.A., Santos‐Reis M. The response of otters to environmental changes imposed by the construction of large dams. Aquat. Conserv. 2014; 24(1): 66-80. https://doi.org/10.1002/aqc.2379
37. Karami M., Dargahi M.D., Hamzepour M. Habitat Suitability Index Model of Common Otter (Lutra lutra) in Prohibited Hunting Area, Deylaman – Dorfak. J. Nat. Envirn. 2012; 65: 127-137. www://doi.org/10.22059/jne.2012.29468
38. Segurado P., Araujo M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004; 31(10): 1555-1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x
39. Sangoony H., Vahabi M., Tarkesh M., Soltani S. Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Appl. Ecol. Env. Res. 2016; 14(4): 85-100. http://doi.org/10.15666/aeer/1404_085100
40. Breiman L. Random forests. Mach. Learn. 2001; 45: 5-32.
https://doi.org/10.1023/A:1010933404324
41. Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Eco. 2008; 77(4): 802-813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
42. Cheng L., Lek S., Lek-Ang S., Li Z. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica 2012; 42(2): 127-136.
https://doi.org/10.1016/j.limno.2011.09.007
43. Sahragard H.P., Chahouki M.Z. An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom Province. Ecol. Model. 2015; 309: 64-71. https://doi.org/10.1016/j.ecolmodel.2015.04.005
44. Naghipour Borj A.A., Haidarian Aghakhani M., Sangoony H. Application of ensemble modelling method in predicting the effects of climate change on the distribution of Fritillaria imperialis. J. Plant. Res. 2019; 32(3): 747-58.
www://doi.org/20.1001.1.23832592.1398.32.3.8.5
45. Haidarian-Aghakhani M., Sangoony H. Predicting the impact of climate change on the distribution of Pistacia atlantica in the Central Zagros. J. Plan. Ecos. Conserv. 2019; 6(13): 197-214. http://pec.gonbad.ac.ir/article-1-387-en.html
46. Ashrafzadeh M.R., Shojaei Z., Shaloei F., Naghipour A.A., Heidarian M. Modeling Current and Future Potential Distributions of Caspian Pond Turtle (Mauremys caspica) under Climate Change Scenarios. Iran. J. Appl. Ecol. 2022; 10(4): 39-51. http://ijae.iut.ac.ir/article-1-1085-en.html
47. Solgi E., Ghasempouri S.M., Esmaili Sari A. Mercury Levels in the River Otters (Lutra lutra) of Iran: Feasibility of Back Calculation for Trace Elements Using Old Stuffed Specimens. ECOPERSIA 2013; 1 (1): 1-10. ‎ https://ecopersia.modares.ac.ir/article-24-9836-en.html
48. Khosravi R., Hemami M.R., Malakoutikhah S., Ashrafzadeh M.R., Cushman S.A. Prey availability modulates predicted range contraction of two large felids in response to changing climate. Biol. Conserv. 2021; 1: 255. https://doi.org/10.1016/j.biocon.2021.109018
49. Erlinge S. Territoriality of the otter Lutra lutra L. Oikos. 1968; 1: 81-98. https://doi.org/10.2307/3564733
50. Edenhofer O., Pichs-Madruga R., Sokona Y., Agrawala S., Bashmakov I.A., Blanco G., Broome J., Bruckner T. Summary for policymakers. In: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5. Cambridge University Press. 2014. 1435. https://pure.iiasa.ac.at/id/eprint/11125
51. Milanovich J.R., Peterman W.E., Nibbelink N.P., Maerz J.C. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change. PloS one 2010; 16; 5(8). https://doi.org/10.1371/journal.pone.0012189
52. Yukimoto S., Kawai H., Koshiro T., Oshima N., Yoshida K., Urakawa S., Tsujino H., Deushi M., Tanaka T., Hosaka M., Yabu S. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II. 2019; 97(5): 931-65. https://doi.org/10.2151/jmsj.2019-051
53. Zarrin A., Dadashi-Roudbari A., Hassani S. Future changes in precipitation extremes over Iran: Insight from a CMIP6 bias-corrected multi-model ensemble. Pure. Appl. Geophys. 2022;179: 441-64. https://doi.org/10.1007/s00024-021-02904-x
54. McCluskie A.E. Temperature-mediated shifts in the foraging behaviour of the Eurasian otter, Lutra lutra L. Thesis, University of Glasgow (United Kingdom); 1998. 254. https://theses.gla.ac.uk/71301/1/10390904.pdf
55. Garcês A., Pires I. Biological and Conservation Aspects of Otter Mortality: A Review. Conservation 2024; 4(2):307-318. https://doi.org/10.3390/conservation4020020