Economic Valuation and Modeling of Multiple Threats to Water and Soil Resources using the WaterWorld Policy Support System in Karkheh National Park - Southwestern Iran

Document Type : Original Research

Authors
1 1 Civil, Water and Environmental Engineering Faculty, Shahid Beheshti University, Tehran, Iran2 Department of Agriculture, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
2 3 Research Group of Environmental Economics, Research Center for Environment and Sustainable Development (RCESD), Department of Environment, Tehran, Iran
3 2 Civil, Water and Environmental Engineering Faculty, Shahid Beheshti University, Tehran, Iran
4 4 Research Group of Environmental Assessment and Risk, Research Center for Environment and Sustainable Development (RCESD), Department of Environment, Tehran, Iran
5 5 PhD Candidate of Public Management- Decision making & Public Policy Making, Faculty of Management and Accounting, Islamic Azad University, Qazvin Branch
Abstract
Aims: This study aims to economic valuation and assess multiple threats to water and soil resources of the Karkheh National Park and Karkheh Protected Area, southwest of Iran.

Methods: Modeling water budget, runoff, soil erosion, and water pollution potential, was performed using the WaterWorld Policy Support System (WWPSS), process-based hydrological model that utilizes remotely sensed and globally available. Eeconomics value has been calculated using the Substitute Cost Method, for 2021.

Findings: The result showed that the southern area of the Karkheh River basin experienced the minimum precipitation, which has led to a decrease in vegetation and an increase in runoff generation in the southern areas. The total runoff generated in the river basin is based on the upstream-downstream relationships from the north to the south was estimated at 81000648 m3.yr-1. The soil erosion rate spiked in the southern area with the vegetation decline and the intensification of runoff could be result in water pollution. Economic valuation represents the real value of water generation in the whole Karkheh National Park and Protected Area was US$ 0.104 million, estimated US$ 6.63 per hectare. In addition, the soil conservation economic value in the entire Karkheh National Park and Protected Area was US$ 9.3 million and US$ 912.2, per hectare.

Conclusion: This information provides valuable awareness into the economic value of natural resources and can help environmental assessors activities related to conservation planning. It assists as a useful tool for emphasizing the economic implications of ecosystem degradation and can help for sustainable management.
Keywords

Subjects


1. Wang Q., Li S., Li, R. Evaluating water resource sustainability in Beijing, China: combining PSR model and matter-element extension method. J. Clean. Prod. 2019; 206:171–179. https://doi.org/10.1016/j.jclepro.2018.09.057
2. Chamani R., Sadeghi S.H.R., Zare S., Shekohideh H., Mumzaei A., Amini H., Hemmati L., Zarei, R. Flood-oriented watershed health and ecological security conceptual modeling using PSR approach for the Sharghonj watershed, South Khorasan Province, Iran. Nat. Resour. Model. 2023a; 36:e12371. https://doi.org/10.1111/nrm.12385
3. Liao H., Sarver E., Krometis L.A.H. Interactive effects of water quality, physical habitat, and watershed anthropogenic activities on stream ecosystem health. Water Res. 2018; 130:69–78. https://doi.org/10.1016/j.watres.2017.11.065
4. Ahn S.R., Kim S.J. Assessment of watershed health, vulnerability, and resilience for determining protection and restoration priorities. Environ. Modell. Softw. 2019; 122:e103926. https://doi.org/10.1016/j.envsoft.2017.03.014
5. Li W., Liu C., Su W., Ma X., Zhou H., Wang W., Zhu, G. Spatiotemporal evaluation of alpine pastoral ecosystem health by using the basic-pressure-stateresponse framework: a case study of the Gannan region, northwest China. Ecol. Indic. 2021; 129:108000. https://doi.org/10.1016/j.ecolind.2021.108000
6. Chamani R., Vafakhah M., Sadeghi S.H.R. Changes in reliability–resilience–vulnerability-based watershed health under climate change scenarios in the Elfin Watershed, Iran. Nat. Hazards 2023b; https://doi.org/10.1007/s11069-022-05774-1
7. Afshari M., Vali A.A. Application of Maximum Entropy Model and Remote Sensing Technique to predict susceptible areas to dust storms in Isfahan Province, Iran. ECOPERSIA 2024;12(1): 25-37. https://doi.org/10.22034/ecopersia.12.1.25
8. Sadeghi S.H.R., Zabihi Silabi M., Sarvi Sadrabad H., Riahi M., Modarresi Tabatabaei S. Watershed health and ecological security modeling using anthropogenic, hydrologic, and climatic factors. Nat. Resour. Model. 2023; e12371. https://doi.org/10.1111/nrm.12371
9. Sun G., Wei X., Hao L., Gonzalez Sanchis M., Hou Y., Yousefpour R., Tang R., Zhang Z. Forest hydrology modeling tools for watershed management: A review. Forest Ecol. Manag. 2023; 530:e120755. https://doi.org/10.1016/j.foreco.2022.120755
10. Yuan L., Sinshaw T., Forshay K.J. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences 2020; 10 (1):25. https://doi.org/10.3390/geosciences10010025
11. Tague C.L., Band L.E. RHESSys: Regional Hydro-Ecologic Simulation System—an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact. 2004; 8 (19):1–42. https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
12. Gochis D.J., Yu W., Yates D.N. The WRF-Hydro model technical description and user’s guide, version 1.0, Ncar technical document. National Center for Atmospheric Research, Boulder, CO, USA, 2013; 120 pp. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
13. Mulligan M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 2013; 44(5):748–769. https://doi.org/ 10.2166/nh.2012.217
14. Van Soesbergen A.J.J., Mulligan M. Modelling multiple threats to water security in the Peruvian Amazon using the WaterWorld Policy Support System. Earth Syst. Dynam. 2013; 4:567–594. https://doi.org/10.5194/esd-5-55-2014, 2014
15. Rodríguez E., Sánchez I., Duque N., Arboleda P., Vega C., Zamora D., López P., Kaune A., Werner M., García C., Burke S. Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resour. Manag. 2020; 34:2179–2199. https://doi.org/10.1007/s11269-019-02236-5
16. Hogeboom R.J., Bruin D., Schyns J.F., Krol M.S., Hoekstra A.Y. Capping human water footprints in the World's River Basins. Earths Future 2020; 8(2): 1-14. https://doi.org/10.1029/2019EF001363
17. Karimi Z., Talebi A. An Integration of Remote Sensing and the DPSIR Framework to Analyze the Land-Use Changes in the Future (Case study: Eskandari Watershed). ECOPERSIA 2023;11(4): 319-336. https://doi.org/10.22034/ecopersia.11.4.319
18. Rockstrom J., Steffen W., Noone K., Persson A., Chapin F., Lambin E., Lenton T., Scheffer M., Folke C., Schellnhuber H., Nykvist B., De Wit C., Hughes T., van der Leeuw S., Rodhe H., Sorlin S., Snyder P., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R., Fabry V., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009; 14:32. https://www.jstor.org/stable/26268316
19. Zuravand G., Moosavi V., Fallah Shamsi SR. TEnhancing Soil Moisture Estimation: Exploring the Synergy of Optical Trapezoid and Deep Learning Models. ECOPERSIA 2023;11(3):255-274. . https://doi.org/10.22034/ecopersia.11.3.255
20. Perz S.G., Cabrera L., Carvalho L.A., Castillo J., Barnes G. Global economic integration and local community resilience: road paving adn rural demographic change in the Southwestern Amazon. Rural Sociology 2010; 75:300–325. https://doi.org/10.1111/j.1549-0831.2009.00008.x
22. Birch J.C., Thapa I., Balmford A., Bradbury R.B., Brown C., Butchart S.H.M., Gurung H., Hughes F.M.R., Mulligan M., Pandeya B., Peh K.S.H., Stattersfield A.J., Walpole M., Thomas D.H.L. What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest. Nepal. Ecosyst. Serv. 2014; 8:118–127. https://doi.org/10.1016/j.ecoser.2014.03.005
23. Van Soesbergen A. Impacts of climate change on water resources of global dams (Doctoral dissertation, King's College London (University of London)). 2013.
24. kalate A., Ghelichipour Z., Akbari E. Modeling and Prioritizing Ecotourism Potential in National Park and Protected Area of Sarigol with Fuzzy-AHP in GIS. ECOPERSIA 2023;11(2): 125-139. https://doi.org/10.22034/ecopersia.11.2.125
25. Chen Y., Zhou Y., Fang S., Li M., Wang Y., Cao K. Crop pattern optimization for the coordination between economy and environment considering hydrological uncertainty. Sci. Total Environ. 2022; 809:151152. https://doi.org/10.1016/j.scitotenv.2021.151152
26. Zhang B., Guo, H., Zhang Y., Li, Z., Liu X., Wang S., Fu Z. A coupling simulation and optimization method developed for environmental-economic management of Lake watershed. J. Environ. Manage. 2022; 318:115546. https://doi.org/10.1016/j.jenvman.2022.115546
27. Vaezi Nejad S., Ghelichipour Z., Adab H., Armin M. IDesigning Recreational Trails in the Sarigol National Park and Protected Area, Iran. ECOPERSIA 2023;11(3): 197-214 https://doi.org/20.1001.1.23222700.2023.11.3.3.7
28. Research Center for Environment and Sustainable Development (RCESD), Tehran, Iran. Economic valuation of ecosystem goods and services Karkheh National Park and Protected Area 2021.
29. Fu B.P. On the calculation of the evaporation from land surface. Chinese J. Atmosphere. Sci. 1981; 5:23–31. https://doi.org/10.3878/j.issn.1006-9895.1981.01.03
30. Zhang L., Hickel K., Dawes W.R., Chiew F.H.S., Western A.W., Briggs P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004; 40. https://doi.org/10.1029/2003WR002710
31. Thornes J.B. The interaction of erosional and vege-tational dynamics in land degradation: spatial outcomes. In Thornes, J.B. (ed.) Vegetation and Erosion. John Wileyand Sons, Chichester, 1990; 41– 53. https://api.semanticscholar.org/CorpusID:126933233
32. Mohammadi S., Balouei F., Haji K., Khaledi Darvishan A., Karydas C.G. Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model. Int. J. Digit. Earth 2021. https://doi.org/10.1080/17538947.2021.1919230
33. Ministry of Agriculture- Jahad. Department of agronomic product I.R. Iran. 2021.
34. Statistical Center of Iran, Presidency of the I. R. Iran. Plan and Budget Organization. Agriculture metadata. 2021.
35. Pandeya B., Mulligan M. Modelling crop evapotranspiration and potential impacts on future water availability in the Indo-Gangetic Basin. Agr. Water Manage. 2013; 129:163–172. https://doi.org/10.1016/j.agwat.2013.07.019
36. Cacal J.C., Austria V.C.A., Taboada E.B. Extreme Event-based Rainfall-runoff Simulation Utilizing GIS Techniques in Irawan Watershed, Palawan, Philippines. Civil Eng. J. 2023; 9(1). https://doi.org/10.28991/CEJ-2023-09-01-017
37. Jourgholami M., Karami S., Tavankar F., Lo Monaco A., Picchio R. Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests 2021; 12(1):1–19. https://doi.org/10.3390/f12010049
38. Zarandian A., Ramezani Mehrian M., Mohammadyari F. Impact assessment of vegetation loss on the ecosystem functions in a semiarid watershed in Iran. Acta Geophys. 2022; 70:677–696. https://doi.org/10.1007/s11600-021-00716-0
39. Bagheri S., Dehghan Rahimabadi P., Khosravi H., Azarnivand H. Investigating the Relationship between Meteorological and Agricultural Droughts in Northwest Iran. ECOPERSIA 2024;12(2): 121-134. https://doi.org/10.22034/ECOPERSIA.12.2.3
40. Yang D., Kanae S., Oki T., Koike T., Musiake K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process 2003; 17:913–2928. https://doi.org/10.1002/hyp.1441
41. Honda E.A., Durigan G. Ecosystem restoration and water yield. Hoehnea 2017; 44(3):315–327. https://doi.org/10.1590/2236-8906-82/2016
42. Novotny V. Diffuse pollution from agriculture — a worldwide outlook. Water Sci. Technol. 1999; 39(3):1–13. https://doi.org/10.1016/S0273-1223(99)00027-X
43. Avila-García D., Morató J., Pérez-Maussán A.I., Santillán-Carvantes P., Alvarado J., Comín F.A. Impacts of alternative land-use policies on water ecosystem services in the Río Grande de Comitán-Lagos de Montebello watershed, Mexico. Ecosyst. Serv. 2020; 45:101179. https://doi.org/10.1016/j.ecoser.2020.101179
44. Ferreira P., van Soesbergen A., Mulligan M., Freitas M., Vale M.M. Can forests buffer negative impacts of land-use and climate changes on water ecosystem services? The case of a Brazilian megalopolis. Sci. Total Environ. 2019; 685:248–258. https://doi.org/10.1016/j.scitotenv.2019.05.065