The Emergence of a New Record of Scincella lateralis Under the Canopy Layer of Ligustrum vulgare in Iran and the Similarity of the Ecological Niche with America

Document Type : Original Research

Author
member of scientific board of Yadegar -e- Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran.
Abstract
Aims: The natural dependence between the habitats of certain plants and animals can be a factor in ecosystem stability. Canopies of Ligustrum vulgare on the edge of Mohammad Shahr’s (Karaj) gardens in Iran are introduced as a new skink record habitat called Scincella lateralis.

Material & Methods: Direct observations of behavior in habitat and glass container, checking climatic records, and studying the morphological and ecological characteristics of the newly found species.

Findings: Ligustrum vulgare provides a suitable and safe canopy for the movement of S. Lateralis due to climate change. S. lateralis lizards are omnivorous and feed on live insect larvae and small insects; the population of insects that were pests has been significantly reduced. It seems that changes in the transitional climate zone from cold and semi-arid to semi-cold and humid have created landscape fragmentation, which can be one of the reasons for the emergence of this species. The body length of the new adult S. lateralis is about 6.5 cm, which is shorter than the reported specimens. It crawls like a snake and behaves like a dinosaur.

Conclusion: The overlap of the L. vulgare vegetation map with the geographic distribution of S. lateralis in America and the repetition of this cooperation in Iran show that this type of lizard can be a valuable indicator for monitoring ecosystem changes. In addition, it is possible to take advantage of the coexistence of these two in the design and management of ecosystems.


Keywords

Subjects


References
1. Wahle A., Rödder D., Chapple D.G., Meiri Sh., Rauhaus A., Ziegler Th. Skinks in Zoos: A global approach on distribution patterns of threatened Scincidae in zoological institutions. GECCO 2021; 30: e01800. https://doi.org/10.1016/j.gecco.2021.e01800
2. Miller K. Scincella lateralis Ground Skink, Little Brown Skink. 2016. https://animaldiversity.org/accounts/Scincella_lateralis/
3. Chapple D., Slavenko A., Tingley R., Farquhar J.E., Camaiti M., Roll U., Meiri Sh. Built for success: Distribution, morphology, ecology and life history of the world's Skinks. Ecol. Evol. 2023:13 (12): e10791. DOI: 10.1002/ece3.10791
4. Parker S. Physiological ecology of the ground skink, Scincella lateralis in South Carolina: thermal biology, metabolism, water loss, and seasonal patterns. Herpetol. Conserv. Biol. 2014; 9(2):309−321. https://www.herpconbio.org/Volume_9/Issue_2/Parker_2014.pdf
5. Mozaffarian V. Dictionary of Iranin Plant Names. Farhang Maaser Publications. 1998.756pp.
6. Balková M., Kubalíková L., Prokopová M., Sedlák P., Bajer, A. Ecosystem Services of Vegetation Features as the Multifunction Anti-Erosion Measures in the Czech Republic in 2019 and Its 30-Year Prediction. Agriculture 2021; 11(2):105. https://doi.org/10.3390/agriculture11020105
7. Aber J.W. National Park Service U.S. Department of the Interior. Natural Resource Condition Assessment for Russell Cave National Monument. 2017; 131p. http://npshistory.com/publications/ruca/nrr-2019-1942.pdf
8. Kansas Herpetofaunal Atlas. https://webapps.fhsu.edu/ksherp/account.aspx?o=99&t=61
9. Becker B.M., Paulissen M.A. Sexual dimorphism in head size in the little brown skink (Scincella lateralis). Herpetol. Conserv. Biol. 2012; 7(2): 109–114. https://www.researchgate.net/publication/286956786_Sexual_dimorphism_in_head_size_in_the_little_brown_skink_Scincella_lateralis
10. Franklin C.J. The Ground Skink, Scincella lateralis. 2016. http://www.texasherpetology.org/Scincella-lateralis.html.
11. McAllister C. T., Seville R. S., Connior M. B., Trauth S. E., Robison H. W. Two new species of coccidia (Apicomplexa: Eimeriidae) from ground skinks, Scincella lateralis (Sauria: Scincidae), from Arkansas, USA. Syst. Parasitol. 2014; 88(1): 85–90. http://doi.org/10.1007/s11230-014-9485-4
12. Miller. Scincella lateralis. Ground skink, Little Brown Skink. 2016. https://animaldiversity.org/accounts/Scincella_lateralis/#561012D6-408A-11E9-AC85-005056AB59D3
13. Maryland. Departmet of natural resources. Little Brown Skink (Scincella lateralis). https://dnr.maryland.gov/wildlife/Pages/plants_wildlife/herps/Squamata_Lacertilia.aspx?LizardName=Little+Brown+Skink
14. Nasrabadi R., Rastegar-Pouyani N., Rastegar-Pouyani E., Gharzi, A. A revised key to the lizards of Iran (Reptilia: Squamata: Lacertilia). Zootaxa. 2017; 4227 (3): 431–443. http://10.11646/zootaxa.4227.3.9
15. Mirshekarnezhad B., Nabi Ilkaee M. Forecasting the seasonal variations of atmospheric factors in Karaj agroclimate ecosystem using GCM-HadCM3 model, JES. 2020; 5 (1): 2370-2377. https://www.jess.ir/article_105716_a23bf3eb47f0e372d233fcee2c642769.pdf?lang=en
16. Khordadi M.J., Alizadeh A., Nasiri Mahallati M., Hoshmand, D. An Evaluation of the Impact of Climate Change on Climatic Parameters and Dry and Wet Spells in the next 100 years using Combining IDW and Change Factor Methods (A Case Study: in Tehran-Karaj Subbasin). J. Geogr. Reg. Devt. 2014; 21: 157-178. https://doi.org/10.22067/geography.v11i21.36343
17. Anelli V,. Bars-Closel M., Herrel A ,. Kohlsdorf T. Different selection regimes explain morphological evolution in fossorial lizards. Funct. Ecol. https://doi.org/10.1111/1365-2435.14557.
18. Merilӓ J. Evolution in response to climate change: In pursuit of the missing evidence. BioEssays. 2012; 34(9):811-8. DOI: 10.1002/bies.201200054
19. Edelsparre A. H., Fitzpatrick M. J., Saastamoinen M., Teplitsky C. Evolutionary adaptation to climate change. Evol. Lett. 2024; 8(1): 1–7. https://doi.org/10.1093/evlett/qrad070
20. She H., Hao Y., Song G., Luo X., Lei F., Zhai W., Qu Y. Gene expression plasticity followed by genetic change during colonization a high-elevation environment. Genetics and Genomics, Evol. Biol. 2023. :1-25. https://doi.org/10.7554/eLife.86687.2
21. Ho W-C., Li D., Zhang A.J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 2020; 6 (21): eaba3388. DOI: 10.1126/sciadv. aba3388.
22. Taghavizad R*., Majd A., Nazarian H. Study of dependency of developmental stages of pollens and their pollination by honeybees. Iranian Journal of Biological Sciences. 2009; 4 (3):. 23-33.
23. Sparrow B.D., Rdwards W., Mitchel Muron S.E., Wardle G.M., Guren G.R., Bastin J-F., Morris B., Christensen R., Phinn S., Lowe A.J. Effective ecosystem monitoring requires a multi‐scaled approach. BIOL. REV. 2020; 95(6): 1706-1719. DOI: 10.1111/brv.12636
24. Murunga K. W., Nyadawa M., Sang J., Cheruiyot Ch. Characterizing landscape fragmentation of Koitobos river sub-basin, Trans-Nzoia, Kenya. Heliyon. 2024; 10(7): e29237. doi: 10.1016/j.heliyon
25. Tao Y., Hasting A., Lafferty K., Hanski I., Ovaskainen O. Landscape fragmentation overturns classical metapopulation thinking. Proc. Natl. Acad. Sci. 2024. 121(20): e2303846121. DOI:10.1073/pnas.2303846121
26. Galán-Acedo C., Fahrig L., Riva F., Schulz T. Positive effects of fragmentation per se on the most iconic metapopulation. Conserv. Lett. 2024; 17: e13017. 1-9. https://doi.org/10.1111/conl.13017
27. Grover N. Indicator species-environmentnotes. 2024. https://prepp.in/news/e-492-indicator-species-environment-notes
28. Siddiga A.H., Ellisonb A.M., Ochs A., Villar-Leemand C., Lau M.K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016; 60: 223-230. doi: 10.1016/j.ecolind.2015.06.036
29. Castaldi S., Formicola N., Mastrocicco M., Morales Rodríguez C., Morelli R., Prodorutti D., Vannini A., Zanzotti R. A multi-indicator approach to compare the sustainability of organic vs. integrated management of grape production. Ecol. Indic. 2024; 158. https://doi.org/10.1016/j.ecolind.2023.111297
30. Riva F., Fahrig L. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecol. Lett. 2022; 26(2): 286-277. https://doi.org/10.1111/ele.14145
31. Taghavizad R., Ahmadi R., Rahim N. Comparative measurement of proline content in dried and fresh forms of Vitis vinifera L., Portulaca oleracea L. and Rosmarinus officinalis L. by different solvents. Dev. Biol. 2019; 11(2):53-65.
32. Virginia Herprtological Society. Virginia Lizard Identification Keys. https://www.virginiaherpetologicalsociety.com/identification-keys/id-keys-lizards/index.html
33. Giambalvo H. 5 Important Reasons to Not Plant Ligustrum (Privet). Invasive plants. 2021. https://nativebackyards.com/ligustrum/
34. Little Brown Skinks and the Department of Defense – DENIX. https://www.denix.osd.mil/dodparc/denix-files/sites/36/2018/08/Little-Brown-Skink_Fact-Sheet_cleared_508.pdf. https://en.wikipedia.org/wiki/Scincella_lateralis
35. Köppen Climate Types US 50.png. Wikipedia, the free encyclopedia. https://en.m.wikipedia.org/wiki/File:K%C3%B6ppen_Climate_Types_US_50.png
36. Glynne E., Adams D.C. The effect of miniaturization on the evolution of sexual size dimorphism in geckos. The effect of miniaturization on the evolution of sexual size dimorphism in geckos. Evolution. 2024; 78(7), 1275–1286. https://doi.org/10.1093/evolut/qpae046
37. Pourgholam-Amiji M., Ansari Ghojghar M., Khoshravesh M., Liaghat A. Trends of Soil Salinity Changes and Its Relation to Climate Variables (Case Study: Karaj). Water Management in Agriculture. 2019; 6(2): 77-90.
38. Gautam M., Arora N., Goel NK. Prediction of Precipitation for Considering Climate Change and GCM Outputs: Satluj River. Ecopersia. 2014; 2(4): 757-765. http://ecopersia.modares.ac.ir/article-24-2083-en.html
39. Kouhi S.M.M., Erfanian M. Predicting the Present and Future Distribution of Medusahead and Barbed Goatgrass in Iran. Ecopersia. 2020; 8(1): 41-46. http://ecopersia.modares.ac.ir/article-24-35969-en.html
40. Brownscombe J.W., Midwood J.D., Doka S.E., Cooke S.J. Telemetry based spatial–temporal fish habitat models for fishes in an urban freshwater harbour. Hydrobiologia. 2023; 850:1779–1800. Doi. org/10.1007/s10750-023-05180-z
41. Ahmadi Sani N. A survey on the current distribution and habitat suitability of the Great Bustard in West Azerbaijan, Iran. JWB. 2017; 1(2): 88-93. DOI: 10.22120/jwb.2017.28295
42. Moreno-Lara I., Becerra-López J.L., Ramírez-Bautista A. Effect of climate change on fossorial species: a case study comparing species of the genus Scincella. AMRE. 2023. http://10.1163/15685381-bja10155
43. Putman B.J., Tippie Z A. Big city living: A global meta-analysis reveals positive impact of urbanization on body size in lizards´. Front. Ecol. Evol. 2020; 27 November. https://doi.org/10.3389/fevo.2020.580745
44. Fromm E., Zinger L., Pellerin F., Gesu LD., Jacob S. et al. Warming effects on lizard gut microbiome depend on habitat connectivity. Proc. Biol. Sci. 2024. doi: 10.1098/rspb.2024.0220.
45. Civantos E., Arribas R., Martin J. Niche occupancy of two (congeneric) skinks in an islands environment. 2020;41(3). AMRE. DOI: 10.1163/15685381-bja10002
46. Paulissen M.A. Spatial learning in the little brown skink, Scincella lateralis: the importance of experience. Anim. Behav. 76(1): 135-141. https://doi.org/10.1016/j.anbehav.2007.12.017
47. Rubbo M.J., Townsend V.R., Jr., Smyers S.D., Jaeger R.G. The potential for invertebrate–vertebrate intraguild predation: the predatory relationship between wolf spiders (Gladicosa pulchra) and ground skinks (Scincella lateralis). Canadian Journal of Zoology. 2001; 79( 8). https://doi.org/10.1139/z01-098.
48. Brooks G.R. Scincella lateralis (Say) Ground Skink. Catalogue of American Amphibians and Reptiles. 1975; 169.1-169.4. webapps.fhsu.edu/ksherp/bibFiles/2506.pdf
49. Czech Academy of sciences, the emergence of a new species: scientists clarify how this process works. https://www.ivb.cz/en/news/the-emergence-of-a-new-species-scientists-clarify-how-this-process-works
50. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.30764
51. https://www.invasiveplantatlas.org/subject.html?sub=3036