1. Mortazavi S., Saberinasab F. Heavy metals assessment of surface sediments in Mighan wetland using the sediment quality index. ECOPERSIA. 2017; 5(2):1761-70. https://ecopersia.modares.ac.ir/article-24-9773-en.html.
2. Kojadinovic J., Potier M., Le Corre M., Cosson R.P., Bustamante P. Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. Sci. Total Environ. 2006; 366(2-3): 688-700. https://pubmed.ncbi.nlm.nih.gov/16580709/.
3. Abdolahpur Monikh F., Safahieh A., Savari A., Doraghi A. Heavy metal concentration in sediment, benthic, benthopelagic, and pelagic fish species from Musa Estuary (Persian Gulf). Environ. Monit. Assess. 2013; 185(1):215-22. https://pubmed.ncbi.nlm.nih.gov/22318741/.
4. Hosseini S.M., Mirghaffari N., Hosseini S.V. Risk assessment of mercury due to consumption of kutum of the Caspian Sea (Rutilus frisii kutum) in Mazandaran Province. J. Fish. 2011; 64(3): 243-57. https://jfisheries.ut.ac.ir/article_23572.html?lang=en.
5. Askary Sary A, Mohammadi M. Mercury concentrations in commercial fish from freshwater and saltwater. Bull. Environ. Contam. Toxicol. 2012; 88:162-5. https://pubmed.ncbi.nlm.nih.gov/22210447/.
6. Azimi A., Safahieh A., Dadollahi Sohrab A., Zolgharnein H., Saffar B., Savari A. Assessment of Metallothionein as a Biomarker of Heavy Metal (Hg, Cd, Pb and Cu) in Oyster Crassostrea gigas in Imam Khomeini Port. J. Oceanogr. 2012; 3(9): 27-39. http://joc.inio.ac.ir/article-1-106-en.html.
7. Agah H., Leermakers M., Gao Y., Fatemi S.M., Katal M.M., Baeyens W., Elskens M. Mercury accumulation in fish species from the Persian Gulf and in human hair from fishermen. Environ. Monit. Assess. 2010; 169: 203-16. https://link.springer.com/article/10.1007/s10661-009-1162-8.
8. Donaldson S.G., Van Oostdam J., Tikhonov C., Feeley M., Armstrong B., Ayotte P., Boucher O., Bowers W., Chan L., Dallaire F., Dallaire R. Environmental contaminants and human health in the Canadian Arctic. Sci. Total. Environ. 2010; 408(22): 5165-234. https://pubmed.ncbi.nlm.nih.gov/20728918/.
9. Esmaeili Sari A. Pollutants, health and standards in the environment. Mehr. 2002; 24: 767.
10. Fischer W. FAO species identification sheets for fishery purposes. Western Indian Ocean (Fishing Area 51). 1984: I-V. https://www.fao.org/publications/card/en/c/6c5cf70a-1d97-59d4-9a2d-7ba91953821b/.
11. Navaluna N.A. Morphometrics, biology, and population dynamics of the croaker fish, Otolithes ruber. ICLARM Technical Reports (Philippines). 1982(7).https://agris.fao.org/search/en/providers/122428/records/6471bafa77fd37171a6d95de.
12. Hosseini M., Nabavi S.M., Nabavi S.N, Pour N.A. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers. Environ. Monit. Assess. 2015; 187: 1-7. https://link.springer.com/article/10.1007/s10661-015-4464-z.
13. Eskandari G., Koochaknejad E., Jahani N. Suitable site selection for finfish mariculture development in the northwest Persian Gulf (Iran-Khuzestan). J. Anim. Environ. 2014; 6(3): 79-90. http://www.aejournal.ir/article_12100.html.
14. Kazemi A., Riyahi Bakhtiari A., Kheirabadi N., Mohammad Karimi A. Distribution of Pb in Sediment and Shell of Rocky Oysters (Saccostrea cucullata) of Lengeh Port, Qeshm and Hormoz Islands in Persian Gulf, Iran. ECOPERSIA. 2013; 1(2): 191-8. https://ecopersia.modares.ac.ir/article-24-7689-en.html.
15. Farkhondeh G., Safaie M., Kamrani E., Valinassab T. Population parameters and reproductive biology of Otolithes ruber (Bloch & Schneider, 1801)(Teleostei: Sciaenidae) in the northern Makran Sea. Iran. J. Ichthyol. 2018; 5(3):173-83. https://ijichthyol.org/index.php/iji/article/view/5-3-1.
16. Pourkhabbaz H.R., Hedayatzadeh of F., Cheraghi M. Determination Heavy Metals Concentration at Water Treatment Sites in Ahwaz and Mollasani Using Bioindicator. ECOPERSIA. 2018; 6(1) :55-66. https://ecopersia.modares.ac.ir/article-24-14719-en.html.
17. Amoozadeh E., Malek M., Rashidinejad R., Nabavi S., Karbassi M., Ghayoumi R., Ghorbanzadeh-Zafarani G., Salehi H., Sures B. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ. Sci. Pollut. Res. Int. 2014; 21: 2386- 2395. https://pubmed.ncbi.nlm.nih.gov/23775003/.
18. Sinaei M., Loghmani M., Bolouki M. Application of biomarkers in brown algae (Cystoseria indica) to assess heavy metals (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in the northern coasts of the Gulf of Oman. Ecotoxicol. Environ. Saf. 2018; 164: 675-80. https://pubmed.ncbi.nlm.nih.gov/30170316/.
19. Gholamhosseini A., Shiry N., Soltanian S., Banaee M. Bioaccumulation of metals in marine fish species captured from the northern shores of the Gulf of Oman, Iran. Reg. Stud. Mar. Sci. 2021; 41: 101599. https://ouci.dntb.gov.ua/en/works/4b8K0g19/.
20. Loghmani M., Tootooni M.M., Sharifian S. Risk assessment of trace element accumulation in two species of edible commercial fish Scomberoides commersonnianus and Cynoglossus arel from the northern waters of the Oman Sea. Mar. Pollut. Bull. 2022; 174: 113201. https://pubmed.ncbi.nlm.nih.gov/34863073/.
21. Abd-Elghany S.M., Zaher H.A., Elgazzar M.M., Sallam K.I. Effect of boiling and grilling on some heavy metal residues in crabs and shrimps from the Mediterranean Coast at Damietta region with their probabilistic health risk assessment. J. Food. Compos. Anal. 2020; 93: 103606. https://www.sciencedirect.com/science/article/abs/pii/S0889157520313119.
22. Al-Majed N.B., Preston M.R. An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. Mar. Pollut. Bull. 2000; 40(4):298-307. https://ui.adsabs.harvard.edu/abs/2000MarPB..40..298A/abstract.
23. USEPA. Guidance for assessing chemical contaminant data for use in fish advisories. Risk assessment and fish consumption limits, 2000. https://www.epa.gov/choose-fish-and-shellfish-wisely/epa-guidance-developing-fish-advisories.
24. Sparling D.W. Ecotoxicology essentials: environmental contaminants and their biological effects on animals and plants. Academic Press; 2016. https://shop.elsevier.com/books/ecotoxicology-essentials/sparling/978-0-12-801947-4.
25. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on lead in food. EFSA Journal. 2010; 8(4):1570. https://www.efsa.europa.eu/en/efsajournal/pub/1570.
26. Haj Heidary R., Golzan S.A., Mirza Alizadeh A., Hamedi H., Ataee M. Probabilistic health risk assessment of potentially toxic elements in the traditional and industrial olive products. Environ. Sci. Pollut. Res. 2023; 30(4):10213-25. https://pubmed.ncbi.nlm.nih.gov/36068456/.
27. Kasper D., Palermo E.F., Dias A.C., Ferreira G.L., Leitão R.P., Branco C.W., Malm O. Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir, Brazil. Neotrop. Ichthyol. 2009; 7: 751-8. https://www.scielo.br/j/ni/a/CkKSfvRFmP6xjVFW7t9sw5q/?lang=en.
28. Mieiro C.L., Pacheco M., Pereira M.E., Duarte A.C. Mercury distribution in key tissues of fish (Liza aurata) inhabiting a contaminated estuary—implications for human and ecosystem health risk assessment. J. Environ. Monit. 2009; 11(5):1004-1012. https://pubs.rsc.org/en/content/articlelanding/2009/em/b821253h.
29. Havelková M., Dušek L., Némethová D., Poleszczuk G., Svobodová Z. Comparison of mercury distribution between liver and muscle. A biomonitoring of fish from lightly and heavily contaminated localities. Sensors. 2008; 8(7): 4095-4109. https://www.mdpi.com/1424-8220/8/7/4095.
30. Wiener J.G., Gilmour C.C., Krabbenhoft D.P. Mercury strategy for the bay-delta ecosystem: a unifying framework for science, adaptive management, and ecological restoration. University of Wisconsin-La Crosse; 2003. https://www.semanticscholar.org/paper/Mercury-Strategy-for-the-Bay-Delta-Ecosystem%3A-A-for-Wiener Gilmour/3e6de61607ff97161cd5e68e49d2f533db3b337a.
31. Clarkson T.W. The three modern faces of mercury. Environ. Health Perspect. 2002; 110(suppl 1):11-23. https://pubmed.ncbi.nlm.nih.gov/11834460/.
32. Wang W.X., Wong R.S. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Mar. Ecol. Prog. Ser. 2003; 261:257-68. https://www.semanticscholar.org/paper/Bioaccumulation-kinetics-and-exposure-pathways-of-a-Wang-Wong/cdde57c11e7e142a8a7e343337a4c7bcd7c08815.
33. Koli A.K., Williams W.R., McClary E.B., Wright E.L., Burrell T.M. Mercury levels in freshwater fish of the state of South Carolina. Bull. Environ. Contam. Toxicol. 1977; 17: 82-9. https://pubmed.ncbi.nlm.nih.gov/836979/.
34. Assar M. Examine bioaccumulation of mercury and methylmercury in fish Johnius belangerii in the creeks of Mahshahr (Doctoral dissertation, M. SC. thesis, Marine Biology Group, Faculty of Oceanography and Marine Science, Khorramshahr University of Marine Science and Technology. 2009. 97p.(in Persian)).
35. Haghighat M. Investigated bioaccumulation of mercury in fish shoes (Euryglossa orientalis) in Musa creeks (Doctoral dissertation, M. SC. thesis, Marine Biology Group, Faculty of Oceanography and Marine Science, Khorramshahr University of Marine Science and Technology. 90p.(in Persian)).
36. Guilherme S., Pereira M.E., Santos M.A., Pacheco M. Mercury distribution in key tissues of caged fish (Liza aurata) along an environmental mercury contamination gradient. Stud. Environ. Chem. 2010; 3: 165-73. https://www.semanticscholar.org/paper/Mercury-Distribution-in-Key-Tissues-of-Caged-Fish-(-%C5%A0.-Guilherme/18040dd3b9bd556d25e268008ad08fb10b6aba91.
37. Rezayi M., Esmaeli A.S., Valinasab T. Mercury and selenium content in Otolithes ruber and Psettodes erumei from Khuzestan Shore, Iran. Bull. Environ. Contam. Toxicol. 2011; 86: 511-4. https://pubmed.ncbi.nlm.nih.gov/21461740/.
38. Sahebi Z., Emtyazjoo M. Permissible consumption limits of mercury, cadmium and lead existed in Otolithes rubber. Adv. Environ. Biol. 2011; 5(5):920-8.https://www.semanticscholar.org/paper/Permissible Consumption-Limits-of-Mercury%2C-Cadmium-Sahebi Emtyazjoo/c22433d7d3c03f6c1ce2987421b0a8f6a637c395.
39. Abdollahi, M., Pourkhabbaz, A., Khoshbin, A. 2023. Evaluation of concentrations of heavy metals (copper, mercury and arsenic) in the muscle tissue, liver and skin of Otolithes ruber and Sphyraena forsteri of the Oman Sea. J. Environ. Health. Res. 8(4), pp.419-430. https://jreh.mums.ac.ir/article_21880.html?lang=en.
40. Poulin J., Gibb H., Prüss-Üstün A. World Health Organization. Mercury: assessing the environmental burden of disease at national and local levels. 2008. https://www.who.int/publications-detail-redirect/9789241596572.
41. Okyere H., Voegborlo R.B., Agorku S.E. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food. Chem. 2015; 179: 331-5. https://pubmed.ncbi.nlm.nih.gov/25722173/.
42. Vieira H.C., Morgado F., Soares A.M., Abreu S.N. Fish consumption recommendations to conform to current advice in regard to mercury intake. Environ. Sci. Pollut. Res. Int. 2015; 22: 9595-602. https://pubmed.ncbi.nlm.nih.gov/25948385/.
43. Cladis D.P., Kleiner A.C., Santerre C.R. Mercury content in commercially available finfish in the United States. J. Food Prot. 2014; 77(8):1361-6. https://pubmed.ncbi.nlm.nih.gov/25198598/.
44. Yohannes Y.B., Ikenaka Y., Nakayama S.M., Saengtienchai A., Watanabe K., Ishizuka M. Organochlorine pesticides and heavy metals in fish from Lake Awassa, Ethiopia: Insights from stable isotope analysis. Chemosphere. 2013; 91(6):857-63. https://pubmed.ncbi.nlm.nih.gov/23422170/.
45. Froghi R., Esmaeili-Sari A., Ghasempouri S.M. Comparison of length and weight correlated with the density of mercury in various organs of Kutum: A case study on central coast of South Caspian Sea. Iran. J. Fish. Sci. 2007; 4: 97-102. https://aquadocs.org/handle/1834/39166.
46. Guallar E., Sanz-Gallardo M.I., Veer P.V., Bode P., Aro A., Gómez-Aracena J., Kark J.D., Riemersma R.A., Martín-Moreno J.M., Kok F.J. Mercury, fish oils, and the risk of myocardial infarction. N. Engl. J. Med. 2002; 347(22):1747-54. https://pubmed.ncbi.nlm.nih.gov/12456850/.
47. Abreu S.N., Pereira E., Vale C., Duarte A. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Mar. Pollut. Bull. 2000; 40(4):293-7. https://ui.adsabs.harvard.edu/abs/2000MarPB..40..293A/abstract.
48. Berg V., Ugland K.I., Hareide N.R., Groenningen D., Skaare J.U. Mercury, cadmium, lead, and selenium in fish from a Norwegian fjord and off the coast, the importance of sampling locality Presented at QUASIMEME–QUASH 1999, Egmond aan Zee, The Netherlands, October 6–9, 1999. J. Environ. Monit. 2000; 2(4): 375-7. https://pubs.rsc.org/en/content/articlelanding/2000/em/b002784g.
49. Andrew T., Francis E., Charles M., Irene N., Jesca N., Ocaido M., Drago K., Celsus S., Deborah A., Rumbeiha W. Risk estimates for children and pregnant women exposed to mercury-contaminated Oreochromis niloticus and Lates niloticus in Lake Albert Uganda. Cogent. Food. agric. 2016; 2(1):1228732. https://pubmed.ncbi.nlm.nih.gov/27722183/.
50. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re‐evaluation of curcumin (E 100) as a food additive. EFSA journal. 2010; 8(9): 1679. https://www.efsa.europa.eu/en/efsajournal/pub/1679.
51. Majlesi M., Pashangeh S., Salehi S.O., Berizi E. Human health risks from heavy metals in fish of a fresh water river in Iran. Int. J. Nutr. Sci. 2018; 3(3):157-63. https://www.semanticscholar.org/paper/Human-Health-Risks-from-Heavy-Metals-in-Fish-of-a-Majlesi-Pashangeh/d4134603a6c3231fe9307a06e429d647ceec61b1.
52. Mortazavi S., Norozi Fard P. Risk assessment of non-carcinogenic effects of heavy metals from Dez river fish. Iran. J. Health Sci. 2017; 5(4):10-25. https://jhs.mazums.ac.ir/article-1-514-en.html.
53. Parang H., Esmaeilbeigi M. Total mercury concentration in the muscle of four mostly consumed fish and associated human health risks for fishermen and non-fishermen families in the Anzali Wetland, Southern Caspian Sea. Reg. Stud. Mar. Sci. 2022; 52:102270. https://ui.adsabs.harvard.edu/abs/2022RSMS...5202270P/abstract.
54. Ritonga I.R., Bureekul S., Luadnakrob P., Sompongchaiyakul P. Status Level of Total Mercury (T-Hg) in Barracuda (Sphyraena putnamae) from the Gulf of Thailand. Trends. Sci. 2023; 20(8):5353. https://tis.wu.ac.th/index.php/tis/article/view/5353.
55. Barone G., Storelli A., Meleleo D., Dambrosio A., Garofalo R., Busco A., Storelli M.M. Levels of mercury, methylmercury and selenium in fish: insights into children food safety. Toxics. 2021; 9(2):39. https://pubmed.ncbi.nlm.nih.gov/33672494/.
56. Porto I.S., Dantas S.V., Felix C.S., Cunha F.A., de Andrade J.B., Ferreira S.L. Human health risk assessment of mercury in highly consumed fish in Salvador, Brazil. Mar. Pollut. Bull. 2024; 198:115842. https://pubmed.ncbi.nlm.nih.gov/38039579/.
57. Cheraghi M., Pourkhabbaz H., Javanmardi S. Determination of mercury concentration in Liza abu from Karoon River. J. Maz. Univ. Med. 2013; 23(103):105-12. https://jmums.mazums.ac.ir/article-1-2491-en.html.
58. Sobhanardakani S., Tayebi L., Farmany A. Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl. Sci. J. 2011; 14(10):1453-6. https://www.semanticscholar.org/paper/Toxic-Metal-(Pb%2C-Hg-and-As)-Contamination-of-Gill-Sobhanardakani-Tayebi/eca0eba3d6cce0d31911991b11da4e00c3ab842c