Evaluation of nitrogen application and municipal solid waste compost on wheat yield in a calcareous soil

Document Type : Original Research

Authors
1 Greenhouse Cultivation Research Department, Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Iran.
2 Department of Environment, Faculty of Natural Resources, Semnan University, Semnan, Iran.
Abstract
Aims: Achieve sustainable agricultural production, keeping soil fertility, and reducing environmental hazards, are the main challenges to providing food security in countries with growing populations. In the direction of sustainable crop production, the purpose of this study was to examine the impact of municipal solid waste (MSW) compost with nitrogen fertilizer (N-fertilizer) on wheat yield.

Materials & Method: The nine treatments were organized by a randomized complete block design with three replicates. The following were the treatments: N-fertilizer at 0, 100, and 200 kg.ha-1; and composting waste at 0, 10, and 20 t.ha-1. At maturity, the components of wheat yield were measured.

Findings: The experiment's results showed that the effect of MSW compost with N-fertilizer and their interaction on grain yield and biological function were significant. The highest 1000-grain weight (40.00 gr) and biomass yield (13833 kg.ha-1) were obtained using 20 t.ha-1 of compost with 200 kg.ha-1 N (C20N200 treatment) while the highest harvest index (HI)(52.7) and grainyield (7000 kg.ha-1) were in treated soil with 20 t.ha-1 of compost and 100 kg.ha-1 N (C20N100 treatment). Also, the highest grain protein (11.93 %) was in treated soil with 10 t.ha-1 of compost and 200 kg.ha-1 N (C10N200 treatment).

Conclusion: The results showed that applying these treatments leads to increased wheat yield, indicating that MSW compost and N-fertilizer can increase plant growth. The main issues with using MSW compost in agricultural soils are the presence of soluble salts and the buildup of macro-micronutrients.
Keywords

Subjects


1. Migliorini P., Wezel A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agron. Sustain. Dev. 2017; 37: 63. (2017). https://doi.org/10.1007/s13593-017-0472-4
2. Qaswar M., Jing H., Ahmed W., Li D.C., Liu S.J., Zhang L., Cai A., Liu L.S., Xu Y.M., Gao J.S., et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020; 198: 104569. https://doi.org/10.1016/j.still.2019.104569
3. Singh S., Maiti S.K., Raj D. An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through PMF model. Environ. Monit. Assess. 2023; 195: 306. https://doi.org/10.1007/s10661-023-10924-4
4. Luo F., Ya X-J., Hu X-F., Yan L-J., Cao M-Y., Zhang W.J. Nitrate quantification in fresh vegetables in shanghai: Its dietary risks and preventive measures. Int. J. Environ. Res. Public Health 2022; 19(21): 14487. https://doi.org/10.3390/ijerph192114487
5. Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020; 10: 177. https://www.nature.com/articles/s41598-019-56954-2
6. Gao C., El-Sawah A.M., Ali D.F.I., Alhaj Hamoud Y., Shaghaleh H., Sheteiwy M.S. (2020) The Integration of Bio and Organic Fertilizers Improve Plant Growth, Grain Yield, Quality and Metabolism of Hybrid Maize (Zea mays L.). Agronomy 2020; 10(3): 319. https://doi.org/10.3390/agronomy10030319
7. Menšík L., Hlisnikovský L., Pospíšilová L., Kunzová E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments2018; 18: 2813–2822. https://doi.org/10.1007/s11368-018-1933-3
8. Sui Y., Jin J., Liu X., Zhang X., Li Y., Zhou K., Wang G., Di G., Herbert S.J. Soil carbon sequestration and crop yield in response to application of chemical fertilizer combined with cattle manure to an artificially eroded Phaeozem. Arch. Agron. Soil Sci. 2017; 63: 1510–1522. https://doi.org/10.1080/03650340.2017.1292032
9. Malakuti M.J., Gheibi M.N. Determination of critical levels of nutrients in soil, plant and fruit for the quality and yield improvements of Iran's strategic crops. Agricultural Education Publication, Tehran, IR. 2000; 92 pp. (In Persian). https://www.gisoom.com/book/1177408
10. Baethgen W.E., Christianson C.B., Lamothe A.G. Nitrogen fertilizer effects on growth, grain yield, and yield components of malting barley. Field Crops Res. 1995; 43: 87-99. https://doi.org/10.1016/0378-4290(95)00034-N
11. Folefack A.J.J. The substitution of mineral fertilizer by compost from household waste in Cameroon: economic analysis with a partial equilibrium model. J. Waste Manag. Res. 2009; 27: 207-223. https://doi.org/10.1177/0734242X08090403
12. Wu D.L., Liu P., Luo Y.Z., Tian G.M., Mahmood Q. Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge. J. Zhejiang Univ. Sci. B. 2010; 11(7): 497-505. https://doi.org/10.1631/jzus.b0900271
13. Díaz-Pérez J.C., Germishuizen P., Da Silva A.L.B.R. Effect of Compost Application at Transplant Stage and before Planting to the Field on Plant Growth and Fruit Yield in Bell Pepper (Capsicum annum L.). Commun. Soil Sci. Plant Anal. 2021; 2793-2802. https://doi.org/10.1080/00103624.2021.1956525
14. Abdel-Razzak H., Alkoaik F., Rashwan M., Fulleros R., Ibrahim M. Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings. 2019; J. Plant Nutr. 2019; 42(3): 287–295. https://doi.org/10.1080/01904167.2018.1554682
15. Aram K., Rangarajan A. Compost for nitrogen fertility management of bell pepper in a drip-irrigated plasticulture system. Hortsci. 2005; 40(3): 577–81. https://doi.org/10.21273/HORTSCI.40.3.577
16. Dick W.A., McCoy E.L. Enhancing soil fertility by addition of compost, in Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Hoitink, H.A.J. (ed) (Renaissance Publications, Ohio). 1993; 622-644. https://www.researchgate.net/publication/281997237
17. Arau´jo A.S., de Melo W.J., Singh R.P. Municipal solid waste compost amendment in agricultural soil: changes in soil microbial biomass. Rev. Environ. Sci. Biotechnol. 2010; 9: 41-49. https://doi.org/10.1007/s11157-009-9179-6
18. Hargreaves J.C., Adl M.S., Warman P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008; 123(1): 1-4. https://doi.org/10.1016/j.agee.2007.07.004
19. Nigussie A., Kuyper T.W., de Neergaard A. (2015) Agricultural waste utilisation strategies and demand for urban waste compost: evidence from smallholder farmers in Ethiopia. Waste Manag. 2015; 44: 82-93. https://doi.org/10.1016/j.wasman.2015.07.038
20. Oue´draogo E., Mando A., Stroosnijder L. Effects of tillage, organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Tillage Res. 2006; 91: 57–67. https://doi.org/10.1016/j.still.2005.11.004
21. Soumare´ M., Tack F.M.J., Verloo M.G. Effects of municipal solid waste and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresour. Technol. 2003; 86: 15-20. https://doi.org/10.1016/S0960-8524(02)00133-5
22. Hamdi H., Jedidi N., Ayari F., M’hiri A., Hassen A., Ghrabi A. The effect of Tunis urban compost on soil properties, chemical composition of plant and yield. in: Proceedings of the International Symposium on Environmental Pollution Control and Waste Management, Tunis (EPCOWM’2002). 2002; 383-384. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=EbfToY0AAAAJ&cstart=20&pagesize=80&citation_for_view=EbfToY0AAAAJ:maZDTaKrznsC
23. Phullan N.K., Memon M., Shah J.A., Memon M.Y., Sial T.A., Talpur N.A., Khushk G.M. Effect of organic manure and mineral fertilizers on wheat growth and soil properties. J. Basic Appl. Sci. 2017; 13: 559-565. http://dx.doi.org/10.6000/1927-5129.2017.13.91
24. FAO. 2013. http://faostat.fao.org/ Food and Agriculture Organization of the United Nations, Rome, Italy. https://www.fao.org/3/i3300e/i3300e.pdf
25. Majeed A., Mehdi S.M., Niazc A., Mahmood A., Ul-Haq E., Ahmad N., Javid S., Mehmood A. Influence of P-enriched compost application on economics and P use efficiency of a maize–wheat rotation system. Crop J. 2018; 6(6): 651-658. https://doi.org/10.1016/j.cj.2018.05.007
26. Aredehey G., Berhe D. The effect of compost Use with effective micro-organisms (EM) on grain and biomass yield of wheat cultivated in Tigray, Ethiopia. J. Agri. Sci. Food Technol. 2016; 2(8): 133-138. https://api.semanticscholar.org/CorpusID:207970694
7. Cherif H., Ayari F., Ouzari H., Marzorati M., Brusetti L., Jedidi N., Hassen A., Daffonchio D. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur. J. Soil Biol. 2009; 45: 138-145. https://doi.org/10.1016/j.ejsobi.2008.11.003
28. Goswami L., Nath A., Sutradhar S., Bhattacharya S., Kalamdhad A., Vellingiri K., Kim K.H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017; 200: 243–52. https://doi:10.1016/j.jenvman.2017.05.073
29. Rowell, D.L. Soil science: methods and applications. Lingman Group, Harlow. 1994; 350 pp. https://www.amazon.com/Soil-Science-David-L-Rowell/dp/0582087848
30. Olsen S.L., Sommers L.E. Phosphorus. In: Page AL et al (eds) Methods of soil analysis. part 2, 2nd edn. Agron. Monogr. No. 9, ASA and SSSA, Madison. 1982; 403- 427. https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/agronmonogr9.2.2ed.frontmatter
31. Murphy J., Riley J.P. A modified single solution method for determination of phosphate in natural waters. Analytica. Chimica. Acta 1962; 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
32. Brown J.H., Vaz J.E., Benzo Z., Mejias C. A comparison of extraction and suspension methods for determining exchangeable potassium in soils. Appl. Clay Sci. 1999; 14(5-6): 245-255. https://doi.org/10.1016/S0169-1317(99)00002-2
33. Walkley A., Black I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1943; 37: 29-37. http://dx.doi.org/10.1097/00010694-193401000-00003
34. Bremner J.M., Mulvaney C.S. Nitrogen total. In page A.L., Miller, R.H., Keeney, D.R. (Eds). Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd edition. Agronomy No.9. American Society of Agronomy, Madison, Wisconsin, USA. 1982; 595-622. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
35. Lindsay W.L., Norvell W.A. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978; 42: 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
36. Soil Taxonomy. Keys to Soil Taxonomy, 12 th ed. 2014; USDA-Natural Resources Conservation Service, Washington, DC. https://nrcspad.sc.egov.usda.gov/DistributionCenter/pdf.aspx?productID=1059
37. Zhang M., Heaney D., Henriquez B. A four year study on influence of biosolids/MSW cocompost application in less productive soils in Alberta: nutrient dynamics. Compost Sci. Util. 2006; 14(1): 68-80. https://doi.org/10.1080/1065657X.2006.10702265
38. Piggin C., Haddad A., Khalil Y., Loss S., Pala M. Effects of tillage and time of sowing on bread wheat, chickpea, barley and lentil grown in rotation in rain fed systems in Syria. Field Crops Res. 2015; 173: 57-67. https://doi.org/10.1016/j.fcr.2014.12.014
39. Kabato W., Ergudo T., Mutum L., Janda T., Molnor Z. Response of wheat to combined application of nitrogen and phosphorus along with compost. J. Crop Sci. Biotechnol. 2022; 25: 557-564. https://doi.org/10.1007/s12892-022-00151-7
40. Moharana P.C., Sharma B.M., Biswas D.R., Dwivedi B.S., Singh R.V. Long-term efect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet–wheat cropping system in an Inceptisol of subtropical India. Field Crop Res. 2012; 136: 32–41. https://doi.org/10.1016/j.fcr.2012.07.002
41. Calderón F.J., Vigil M.F., Benjamin J. Compost Input Effects on Dryland Wheat and Forage Yields and Soil Quality. Pedosphere 2018; 28(3): 451-462. https://doi.org/10.1016/S1002-0160(17)60368-0
42. Shiralipour A., McConnell D.B., Smith W.H. Uses and benefits of MSW composts: a review and assessment. Biomass Bioenergy 1992; 3: 267-279. https://doi.org/10.1016/0961-9534(92)90031-K
43. Hu C., Qib Y. Long-term effective micro- organisms application promotes growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013; 46: 63-67. https://doi.org/10.1016/j.eja.2012.12.003
44. Eljak E.A., Hassan H.A., Gorafi Y.S.A., Mohammad Ahmad I.A., Ali M.Z.A. Effect of fertilizers application and growing environment on physicochemical properties and bread making quality of Sudanese wheat cultivar. J. Saudi Soc. Agric. Sci. 2018; 17: 376-384. https://doi.org/10.1016/j.jssas.2016.09.002
45. Mutwali N.I.A., Mustafa A.A., Gorafi Y.S., Mohamed Ahmed I.A. Effect of environment and genotypes on the physicochemical quality of the grains of newly developed wheat inbred lines. Food Sci. Nutr. 2016; 4(4): 508-520. https://doi.org/10.1002/fsn3.313
46. Bouacha O.D., Nouaigui S., Rezgui S. Effects of N and K fertilizers on durum wheat quality in different environments. J. Cereal Sci. 2014; 59: 9-14. https://doi.org/10.1016/j.jcs.2013.11.003
47. Ibrahim M., Hassan A., Iqbal M., Valeem E.E. Response of wheat growth and yield to various levels of compost and organic manure. Pak. J. Bot. 2008; 40: 2135-2141. https://www.pakbs.org/pjbot/PDFs/40(5)/PJB40(5)2135.pdf
48. Ghasemi M.A., Seilsepour M., Nasri M. Study of Consumer compost of municipal waste with the nitrogen on yield and yield component wheat. Agric. Res. Edge Desert 2015; 12(3) 211-220. (In Persian). https://sanad.iau.ir/Journal/kavir/Article/1098337
49. Abate Z., Assefa B., Negassa W. Comparison of environmental performance of municipal solid waste compost and chemical fertilizer. Am. J. Environ. Resour. Econ. 2017; 2(3): 96-101. https://doi.org/10.11648/j.ajere.20170203.11
50. Ashfaq A., Ahmad K., Wajid K., Khan Z.I., Nadeem M., Bashir H., Munir M., Malik I.S. Assessing the fractional impact of municipal solid waste as a fertilizer on various attributes of plant. Pak. J. Bot. 2022; 54(5): 1777-1783. http://dx.doi.org/10.30848/PJB2022-5(39)
51. Kaya Y., Akcura M. Effects of genotype and environment on grain yield and quality traits in bread wheat (Triticum aestivum L.). Food Sci. Technol. (Campinas) 2014; 34(2): 386-393. https://doi.org/10.1590/fst.2014.0041
52. Demelash N., Bayu W., Tesfaye S., Ziadat F., Sommer R. Current and residual effects of compost and inorganic fertilizer on wheat and soil chemical properties. Nutr. Cycl. Agroecosystems 2014; 100: 357-367. https://doi.org/10.1007/s10705-014-9654-5
53. Malakouti M.J., Khougar Z., Khademi Z. New methods in wheat nutrition. Sana Press, Tehran, 2004; 868 pp. (In Persian). https://www.gisoom.com/book/11081424
54. Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014; 59: 365-372. https://doi.org/10.1016/j.jcs.2013.09.001
55. Ranjkesh M. Evaluation of organic and chemical fertilizers effects on iron absorption at Cultivars of Darya and N8019 Wheat. Int. J. Farming Allied Sci. 2015; 4(1): 61–65. http://ijfas.com/wp-content/uploads/2015/02/61-65.pdf
56. Ahmadinejad R., Najafi N., Aliasgharzad N., Oustan S. Effects of organic and nitrogen fertilizers on water use efficiency, yield and the growth characteristics of wheat. J. Water Soil Sci. 2013; 23(2): 177-197. (In Persian). https://www.magiran.com/paper/citation?ids=1173609
57. Ghaderi J., Nemati A., Shariatmadari M. Effects of Municipal Solid Waste Compost and Chemical Fertilizers on Quantitative and Quiltative Yield of Irrigated Wheat (var. Bahar). J. Agroecol. 2019; 11(4): 1293-1307. (In Persian). https://doi.org/10.22067/jag.v11i4.72530