1. Alipour N., et al. Synoptic analysis of dust events and its relation with drought in Alborz and Qazvin provinces. Geography (Regional Planning). 2018; 8(2): 59-68. 20.1001.1.22286462.1397.8.2.4.3.
2. Pourhashemi S., et al. Determination of Geomorphological and Land Use Features of Dust Harvesting Sources (Case Study: Khorasan Razavi Provience). Arid Region Geographic Studies. 2019; 9(34), 14-24.https://sid.ir/paper/382487/en.
3. Boali A., Jafari R., Bashari H. Wind erosion estimation and assessment using Bayesian belief networks in eastern Isfahan township. Desert Ecosystem Engineering. 2022; 6(14): 45-58. https://www.jdmal.ir/article_244522.html#0.
4. Naeimi M., et al. Climatic factors affecting dune mobility in the west of Khorasan Razavi Province, Iran. Journal Geographical Research Desert Areas. 2020; 7(2): 25-45. 20.1001.1.2345332.1398.7.2.2.2.
5. Namdari S., et al. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. . Atmos. Environ. 2018; 173: 265-276. https://doi.org/10.1016/j.atmosenv.2017.11.016.
6. Ghomeshion M., et al. Investigating the effect of land cover on dust spatial distribution in Southern Khuzestan province. ECOPERSIA 2020; 10(3): 179-189. 20.1001.1.23222700.2022.10.3.2.9.
7. Akhzari D., et al. Effect of source areas anthropogenic activities on dust storm occurrences in the western parts of Iran. .Environ. Resour. Res. 2014; 2(2): 124-132. 20.1001.1.23222700.2015.3.4.3.3.
8. Darvand S., et al. Comparison of machine learning models to prioritize susceptible areas to dust production. Journal Range Watershed Management. 2021; 74(1): 53-68. https://doi.org/10.22059/jrwm.2021.321033.1580.
9. Lin X., et al. Machine learning for source identification of dust on the Chinese Loess Plateau. Geophys. Res. Lett. 2020; 47(21): e2020GL088950. https://doi.org/10.1029/2020GL088950.
10. Rahmati O., et al. Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmos. Environ. 2020; 224: 117320. https://doi.org/10.1016/j.atmosenv.2020.117320.
11. Boroughani M., et al. Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecol. Inform. 2020; 56: 101059. https://doi.org/10.1016/j.ecoinf.2020.101059.
12. Zaker E. A. (2012). Combating with desertification process by an emphasis on capabilities of desert areas (case study: Isfahan province). Environ. Stud .2012; 38(3), 155-164. https://jes.ut.ac.ir/article_29157.html.
13. Gholami H., et al. Integrated modelling for mapping spatial sources of dust in central Asia-An important dust source in the global atmospheric system. Atmos. Pollut. Res. 2021; 12(9): 101173. https://doi.org/10.1016/j.apr.2021.101173.
14. Yong M., et al. Impacts of land surface conditions and land use on dust events in the inner Mongolian grasslands, China. Frontiers in Ecology and Evolution. Ecol. Evol 2021; 9: 664900. https://doi.org/10.3389/fevo.2021.664900.
15. Akhzari D., Pessarakli M., Shayesteh K., Bashir Gonbad M. Effect of source areas anthropogenic activities on dust storm occurrences in the western parts of Iran. Environ. Resour. Res. 2014; 2(2): 124-132. 10.22069/ijerr.2014.2210
16. Akhzari D., Farokhzadeh B., Saeedi I., Goodarzi M. Effects of wind erosion and soil salinization on dust storm emission in western Iran. Jouranl Rangeland Science. 2015. https://journals.iau.ir/article_512666.html.
17. Sohil F., Sohali M.U., Shabbir J. An introduction to statistical learning with applications in R. Stat. theory relat. fields. 2020; 6(1): 87-87. http://dx.doi.org/10.1080/24754269.2021.1980261
18. Berger A., Della Pietra S. A., Della Pietra V. J. A maximum entropy approach to natural language processing. Comput. Linguist. Assoc. 1996; 22(1): 39-71. https://aclanthology.org/J96-1002.
19. Woodbury A., Render F., Ulrych T. Practical probabilistic groundâwater modeling. Groundwater. 1995; 33(4): 532-538. https://doi.org/10.1111/j.1745-6584.1995.tb00307.x
20. Abolhasani A., et al. A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area. 20. Land. Degrad. Dev. 2022; 33(17): 3358-3374. https://doi.org/10.1002/ldr.4391.
21. Robinson S. Simulation: the practice of model development and use. Bloomsbury Publishing. 2014.
22. JavanNezhad R., Rezaie M. Modeling the Role of Climate in Distribution of two-spotted spider mite: Case study of Tehran province. Journal Environmental Science Studies. 2020; 5(2): 2554-2559. https://www.jess.ir/article_107137_en.html?lang=en.
23. Yesilnacar E. K. The application of computational intelligence to landslide susceptibility mapping in Turkey, [Parkville, Victoria] : University of Melbourne Department, 200. 2005. https://cat2.lib.unimelb.edu.au/record=b2995654~S6
24. Mehrabi S., Soltani S., Jafari R. Analyzing the relationship between dust storm occurrence and climatic parameters. Journal Science Technology Agriculture Natural Resources. 2015; 19(71): 69-81.http://dx.doi.org/10.18869/acadpub.jstnar.19.71.69.
25. Ghohardoust A., Soleimani Sardoo F. Investigating the Effect of Vegetation on the Occurrence of Dust Phenomenon (Case Study: Hormozgan Province). ). Environmental Erosion Research Journal. 2022; 12(2): 43-60.20.1001.1.22517812.1401.12.2.6.3 .
26. Wang W., et al. Machine learning-based prediction of sand and dust storm sources in arid Central Asia. Int. J. Digit. Earth. 2023; 16(1): 1530-1550. https://doi.org/10.1080/17538947.2023.2202421.
27. Rahmati O., Pourghasemi H. R., Melesse A. M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran.Catena. 2016; 137: 360-372. https://doi.org/10.1016/j.catena.2015.10.010.
28. Siahkamari S., et al. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto. Int. 2018; 33(9): 927-941. https://doi.org/10.1080/10106049.2017.1316780.
29. Abolhasani A., et al. A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area. ARID. LAND. RES. MANAG. 2022; 33(17): 3358-3374. 10.1080/15324982.2023.2298996.
30. Afshari M., Vali A.A. Effectiveness of Remote Sensing and Machine Learning Algorithms in Zoning Areas Prone to Dust in Isfahan Province. Desert Management. 2023; 11(3): 73-https://www.jdmal.ir/article_708763.html.