1. Read J.M., Lam N.S.N. Spatial methods for characterizing land use and detecting land-cover changes for the tropics. Remote Sens. 2002; 23: 2457–2474. https://doi.org/10.1007/s41976-021-00056-z
2. IPPC. Summary for policy makers-level. In: Climate change: Impacts, adaptation, and Vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate. 2007; Cambridge university press, UK. https://pubs.giss.nasa.gov/abs/ip01000b.html
3. Amjath-Babu T.S., Krupnik T.J., Aravindakshan S., Arshad M., Kaechele H. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: implications for policy. J. Ecol. Indic. 2016; 67, 830–838. https://doi.org/10.1016/j.ecolind.2016.03.030
4. Alemayehu F., Taha N., Nyssen J., Girma A., Zenebe A., Behailu M., Poesen J. The impacts of watershed management on land use and land use dynamics in Eastern Tigray (Ethiopia). Resour. Conserv. Recycl. 2009; 53 (4): 192–198. https://doi.org/10.1016/j.resconrec.2008.11.007
5. Bisaro A., Kirk M., Zdruli P., Zimmermann W. Global drivers setting desertification research priorities: insights from a stakeholder consultation forum. Land Degrad. Dev. 2014; 25(1):5–16. https://doi.org/10.1002/ldr.2220
6. Pingali P., Schneider K., Zurek M. Poverty, agriculture and the environment: The case of Sub-Saharan Africa. Marginality: Addressing the nexus of poverty, exclusion, and ecology, Springer, Netherlands. 2014; 151-68. https://doi.org/ 10.1007/ 978- 94- 007-7061-4_10
7. Belay K.T., Van Rompaey A., Poesen J., Van Bruyssel S., Deckers J., Amare K. Spatial analysis of land use changes in Eastern Tigray (Ethiopia) from 1965 to 2007: are there signs of a forest transition? Land Degrad. Dev. 2015; 26 (7): 680–689. https://doi.org/10.1002/ldr.2275
8. Lambin E.F., Geist H.J. Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media, Berlin. 2008. https://doi.org/10.1007/3-540-32202-7
9. Gessesew W.S. Application of DPSIR framework for assessment of land degradation: a review. J. Appro Poult Dairy. Vet Sci. 2017; 3(1):4–000.
10. Bu H., Meng W., Zhang Y., Wan J. Relationships between land use patterns and water quality in the Taizi River basin, China. J. Ecol. Indic. 2014; 41: 187–197. https://doi.org/10.1016/j.ecolind.2014.02.003
11. Saadat H., Adamowski J., Bonnell R., Sharifi F., Namdar M., Ale-Ebrahim S. Land use and land use classification over a large area in Iran based on single date analysis of satellite imagery. Remote Sens. 2011; 66: 608–619. https://doi.org/10.1016/j.isprsjprs.2011.04.001
12. Selcuk R., Nisnci R., Uzun B., Yalçin, A., Inan H., Yomralioglu T. Monitoring land–use changes by GIS and remote sensing techniques: case study of Trabzon. In proceedings of the 2nd FIG regional conference, Marrakech, Morocco, 2–5 December 2003; 1–11. https://doi.org/10.1371/journal.pone.0200493
13. Zhang X.X., Wu P.F., Chen B. Relationship between vegetation greenness and urban heat island effect in Beijing City of China. J. Procedia. Environ. Sci. 2010; 2: 1438–1450. https://doi.org/10.1016/j.proenv.2010.10.157
14. Batool S., Khan K., Ghaffar A., Hussain S.Z. Forest cover change detection and its impact on rainfall pattern in Thak valley (Pakistan). Pak. J. Sci. 2015; 67: 1–9. https://doi.org/10.57041/pjs.v67i1.322
15. Halder A., Ghosh A., Ghosh S. Supervised and unsupervised land use map generation from remotely sensed images using ant based systems. J. Appl. Soft. Comput. 2011; 11 (8): 5770-5781. https://doi.org/10.1016/j.asoc.2011.02.030
16. Veldkamp A., Lambin E.F. Predicting land-use change. J. Agric. Ecosyst. Environ. 2001; 85 (1-3): 1-6. https://doi.org/10.1016/S0167-8809 (01)00199-2
17. Keshtkar H., Voigt W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model. Earth Syst. Environ. 2016; 2 (10): 1-13. https://doi.org/10.1007/s40808-015-0068-4
18. Theobald D.M., Hobbs N.T. Forecasting rural land-use change: a comparison of regression- and spatial transition-based models. Geogr. Environ. Model. 1998; 2: 65- 82. https://doi.org/10.1038/s41467-021-22702-2
19. Wang S.Q., Zheng X.Q., Zang X.B. Accuracy assessments of land use change simulation based on Markov-cellular automata model. J. Procedia Environ. Sci. 2012; 13: 1238-1245. https://doi.org/10.1016/j.proenv.2012.01.117
20. Al-sharif A.A., Pradhan B. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. geosci. 2013; 7: 4291-4301. https://doi.org/10.1007/s12517-013-1119-7
21. Kumar S., Radhakrishnan N., Mathew S. Land use change modelling using a Markov model and remote sensing. Geo. Nat. Hazard Risk 2014; 5 (2): 145-156. https://doi.org/10.1080/19475705.2013.795502
22. Halmy M.W.A., Gessler P.E., Hicke J.A., Salem B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015; 63: 101-112. https://doi.org/10.1016/j.apgeog.2015.06.015
23. Mondal M.S., Sharma N., Garg P.K., Kappas M. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. J. Remote Sens. Space Sci. 2016; 19 (2): 259-272. https://doi.org/10.1016/j.ejrs.2016.08.001
24. Hyandye C., Martz L. W. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Remote Sens. 2017; 38 (1): 64-81. https://doi.org/10.1080/01431161.2016.1259675
25. Nyumba O.T., Wilson K., Derrick C.J., Mukherjee N. The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods Ecol. Evol. 2018; 9 (1): 20–32. https://doi.org/10.1111/2041-210X.12860
26. Lu Y., Wu P., Ma X., Li X. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model. Environ. Monit. Assess. 2019; 191: 1-19. https://doi.org/10.1007/s10661-019-7200-2
27. Talukdar S., Singha P., Mahato S., Pal S., Liou Y. A., Rahman A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020; 12 (7): 1135. https://doi.org/10.3390/rs12071135
28. Abijith D., Saravanan S. Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environ. Sci. Poll. Res. 2021; 29 (57): 86055-86067. https://doi.org/10.1007/s11356-021-15782-6
29. Najafi kalyani N., Ranjbar fordoei A., Panahi F., Musavi H. Prediction of Soil Hydrological Responses under Land use/Cover Changes using Markov Chains in Jiroft Watershed, Iran. ECOPERSIA 2022; 10 (1): 47-59. DOR: 20.1001.1.23222700.2022.10.1.5.8
30. Wang S., Zheng X. Dominant transition probability: Combining CA-Markov model to simulate land use change. Environ. Dev. Sustain. 2023; 25 (7). 6829-6847. https://doi.org/10.1007/s10668-022-02337-z
31. Zhu K., Cheng Y., Zang W., Zhou Q., El Archi Y., Mousazadeh H., ... & David L.D. Multiscenario simulation of land-use change in Hubei Province, China Bbased on the Markov-FLUS model. Land 2023; 12 (4): 744. https://doi.org/ 10.3390/land12040744
32. Geist H.J., Lambin E.F. What drives tropical deforestation? In a meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence; LUCC report series no. 4; LUCC international project office; University of Louvain: Louvain, Belgium, 2001; pp. 1–116. Available online: http://www.pikpotsdam. de/~{}luedeke/lucc4.pdf (accessed on 25 October 2019).
33. Rawat J.S., Kumar M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. Remote Sens. Space. Sci. 2015; 18: 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002
34. Voogt J.A., Oke T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003; 86: 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
35. Dinka M.O. Analysing decadal land use/cover dynamics of the Lake Basaka Catchment (Main Ethiopian Rift) using LANDSAT imagery and GIS. Lakes Reservoirs Res. Manage. 2012; 17: 11–24. https://doi.org/10.1111/j.1440-1770.2012.00493.x
36. Wang X., Zheng D., Shen Y. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008; 72: 56–66. https://doi.org/10.1016/j.catena.2007.04.003
37. Garedew E., Sandewall M., Soderberg U., Campbell B.M. Land-use and land-cover dynamics in the central rift valley of Ethiopia. Environ. Manage. 2009; 44: 683–694. https://doi.org/10.1007/s00267-009-9355-z
38. Kelble C. R., Loomis D. K., Lovelace S., Nuttle W. K., Ortner P. B., Fletcher P., Boyer J.N. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework. PLoS one. 2013; 8 (8): 70766. https://doi.org/10.1371/journal.pone.0070766
39. Hou Y., Zhou S., Burkhard B., Muller F. Socioeconomic influences on biodiversity, ecosystem services, and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Sci. Total Environ. 2014; 490: 1012–1028. https://doi.org/10.1016/j.scitotenv.2014.05.071
40. Dzoga M., Simatele DM., Munga C., Yonge S. Application of the DPSIR framework to coastal and marine fisheries management in Kenya. Ocean Sci. 2020; 55: 193–201. https://doi.org/10.1007/s12601-020-0013-y
41. Sun S., Wang Y., Liu J., Cai H., Wu P., Geng Q., Xu L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016; 532: 140–148. https://doi.org/10.1016/j.jhydrol.2015.11.028
42. Elliott M. The role of the DPSIR approach and conceptual models in marine environmental management: an example for offshore wind power. Mar. Pollut. bull. 2002; 6(44):3–7. https://doi.org/10.1016/s0025-326x (02)00146-7
43. Sekovski I., Newton A., Dennison W.C. Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems. Estuarine Coastal Shelf Sci. 2012; 96: 48–59. https://doi.org/10.1016/j.ecss.2011.07.011
44. Gebremedhin S., Getahun A., Anteneh W., Bruneel S., Goethals P. A drivers pressure-state-impact-responses framework to support the sustainability of fish and fisheries in Lake Tana, Ethiopia. Sustainability 2018; 10 (8): 2957. https://doi.org/10.3390/su10082957
45. Tscherning K., Helming K., Krippner B., Sieber S., Paloma S.G. Does research applying the DPSIR framework support decision making?. Land use policy 2012; 29 (1): 102-110. https://doi.org/10.1016/j.landusepol.2011.05.009
46. Zhou S.D., Mueller F., Burkhard B., CAO X.J., Ying H.O.U. Assessing agricultural sustainable development based on the DPSIR approach: case study in Jiangsu, China. Integrative Agri. 2013; 12 (7): 1292-1299. https://doi.org/10.1016/S2095-3119 (13)60434-7
47. Hashemi M.S., Zare F., Bagheri A., Moridi A. Flood assessment in the context of sustainable development using the DPSIR framework. Environ. Prot. Policy 2014; 2 (2): 41-49. https://doi.org/10.11648/j.ijepp.20140202.11
48. Gari S.R., Newton A., Icely J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coastal Manage. 2015; 103: 63-77. https://doi.org/10.1016/j.ocecoaman.2014.11.013
49. Lewison R.L., Rudd M.A., Al-Hayek W., Baldwin C., Beger M., Lieske S. N., Hines, E. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016; 56: 110-119. https://doi.org/10.1016/j.envsci.2015.11.001
50. Span O.M., Gentile F., Davies C., Lafortezza R. The DPSIR framework in support of green infrastructure planning: A case study in Southern Italy. Land Use Policy 2017; 61: 242-250. https://doi.org/10.1016/j.landusepol.2016.10.051
51. Ehara M., Hyakumura K., Kurosawa K., Araya K., Sokh H., Kohsaka R. Addressing maladaptive coping strategies of local communities to changes in ecosystem service provisions using the DPSIR framework. Ecol. Econ. 2018; 149: 226-238. https://doi.org/10.1016/j.ecolecon.2018.03.008
52. Haque M.N., Mamun M.A., Saroar M.M., Roy T.K. Application of “DPSIR” framework to assess the status and role of blue ecosystem services (BES) in Khulna city. J. Engine. Sci. 2019; 10 (2): 49-60. ISSN 2075-4914 (print); ISSN 2706-6835 (online). www.academia.edu/41546700
53. Gedefaw A.A., Atzberger C., Bauer Th. Agegnehu S.K., Mansberger R. Analysis of land use change detection in Gozamin District, Ethiopia: From remote sensing and DPSIR perspectives. Sustainability 2020; 12 (4534): 1-25. https://doi.org/10.3390/su12114534
54. Rasool R., Fayaz A., ul Shafiq M., Singh H., Ahmed, P. Land use land cover change in Kashmir Himalaya: Linking remote sensing with an indicator based DPSIR approach. Ecol. Indic. 2021; 125: 107447. https://doi.org/10.1016/j.ecolind.2021.107447
55. Obubu J.P., Odong R., Alamerew T., Fetahi T., Mengistou S. Application of DPSIR model to identify the drivers and impacts of land use and land cover changes and climate change on land, water, and livelihoods in the L. Kyoga basin: implications for sustainable management. Environ. Syst. Res. 2022; 11 (1): 1-21. https://doi.org/10.1186/s40068-022-00254-8
56. Quevedo J. M.D., Lukman K.M., Ulumuddin Y.I., Uchiyama Y., Kohsaka R. Applying the DPSIR framework to qualitatively assess the globally important mangrove ecosystems of Indonesia: a review towards evidence-based policymaking approaches. Mar. Policy 2023; 147: 105354. https://doi.org/10.1016/j.marpol.2022.105354
57. Von Dohren P., Haase D. Ecosystem services for planning post-mining landscapes using the DPSIR framework. Land 2023; 12 (5): 1077. https://doi.org/10.3390/land12051077
58. Khawaldah H.A., Farhan I., Alzboun N.M. Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model. Global Environ. Sci. Manage. 2020; 6 (2): 215-232. https://doi.org/10.22034/gjesm.2020.02.07
59. Chanda B., Majumder D.D. Digital image processing and analysis, 2nd ed.; prentice-hall of India Pvt. Ltd.: New Delhi, India, 2011; pp. 1–488. URL : http://www.kopykitab.com/product/6189
60. Vinayak B., Lee H.S., Gedem Sh. Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov Chain model. Sustainability 2021; 13 (471): 1-22. https://doi.org/10.3390/su13020471
61. Lillesand T.M., Kiefer R.R.W., Chipman J.W. Remote sensing and image interpretation, 7th ed.; John Wiley & Sons: New York, NY, USA, 2008; 1–736. https://www.wiley.com/en-us/9781118343289
62. Karimi Z., Sadoddin A., Sheikh V. Effects of watershed management practices on the quadric services of Chehel-Chai Watershed, Golestan Province. Water Soil Manage. Model. 2022; 2 (4): 18-36. https://doi.org/10.1080/10.22098/MMWS.2022.10523.1087
63. Rozenstein O., A. Karnieli. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011; 31 (2): 533-544. https://doi.org/10.1016/j.apgeog.2010.11.006
64. Lillesand T.M., Kiefer R.W. Remote sensing and image interpretation. New York: John Wiley and Sons, 2003. https://doi.org/10.1017/S0016756800012024
65. Youssef A.M., Pradhan B., Tarabees E. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Geosci. 2011; 4: 463–473. https://doi.org/10.1007/s12517-009-0118-1
66. Gupta R.P. Remote Sensing Geology, 2nd ed.; Springer: GmbH, Germany, 2003; 1–592. https://doi.org/10.1007/978-3-662-05283-9
67. Singh S.K., Mustak S., Srivastava P.K., Szabo S., Islam T. Predicting spatial and decadal LULC changes through cellular automata Markov Chain models using earth observation datasets and geo-information. Environ. Processes 2015; 2: 61–78. https://doi.org/10.1007/s40710-015-0062-x
68. Chen L., Nuo W. Dynamic simulation of land use changes in Port city: A case study of Dalian, China. J. Procedia Soc. Behav. Sci. 2013; 96: 981–992. https://doi.org/10.1016/j.ecolind.2021.108499
69. Katana S.J.S., Ucakuwun E.K. Munyao T.M. Detection and prediction of land-cover changes in upper Athi River Catchment, Kenya: A strategy towards monitoring environmental changes. greener. Environ. Manage. Pub. Safe. 2013; 2: 146–157. https://doi.org/10.15580/GJEMPS.2013.4.052113625
70. Berger T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agri. Econ. 2001; 25: 245–260. https://doi.org/10.1016/S0169-5150(01)00082-2
71. Lopez E., Bocco G., Mendoza M., Duhau E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia City, Mexico. Landscape Urban Plann. 2001; 55: 271–285. https://doi.org/10.1016/S0169-2046(01)00160-8
72. Batty, M.; Xie, Y.; Sun, Z. Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban Syst. 1999; 23: 205–233. https://doi.org/10.1016/S0198-9715(99)00015-0
73. Islam K., Rahman M.F., Jashimuddin M. Modeling land use change using cellular automata and artificial neural network: The case of Chunati wildlife sanctuary, Bangladesh. Ecol. Indic. 2018; 88: 439–453. https://doi.org/10.1016/j.ecolind.2018.01.047
74. Nath B., Wang Zh., Ge Y., Islam K., Singh R.P., Niu Zh. Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. Geo. Inf. 2020; 9 (134): 1-25. https://doi.org/10.3390/ijgi9020134
75. Eastman J.R. IDRISI Taiga, Guide to GIS and Remote Processing; Clark University: Worcester, MA, USA, 2009. https://doi.org/10.1007/35928662
76. Chaudhuri G., Clarke K.C. Temporal accuracy in urban growth forecasting: a study using the SLEUTH model. Trans. GIS. 2014; 18 (2): 302–320. https://doi.org/10.1111/tgis.12047.
77. Silva L.P.E., Xavier A.P.C., da Silva R.M., Santos C.A.G. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecol. Conserv. 2020; 21: 21. https://doi.org/10.1016/j.gecco.2019.e00811
78. Cheruto M.C., Kauti M.K., Kisangau P.D., Kariuki P. Assessment of land use and land use change using GIS and remote sensing. Remote Sens. GIS. 2016; 5: 1–6. https://doi.org/10.4172/2469-4134.1000175
79. Barson M., Lesslie R., Smith J., Stewart J. Developing land use and land use data sets for the Australian Continent—a collaborative approach; bureau of rural sciences: Canberra, Australia. 2020; Available online: www.aag.org/galleries/nalcs/CH5.pdf (accessed on 12 January 2020).
80. Foody G.M. Status of land cover classification accuracy assessment. J. Remote. Sens. Environ. 2002; 80 (1): 185–201. https://doi.org/10.1016/S0034-4257 (01)00295-4
81. OECD. The impact of culture on tourism, published on the responsibility of the secretary-general of the OECD. 2009; ISBN- 978-92-64-05648-0. https://doi.org/10.1787/9789264040731-4-en
82. Edith S., Weterings R. Environmental indicators: Typology and overview; EEA Tech. Rep. No. 25/1999; European Environment Agency: Copenhagen, Denmark, 1999; Available online: https://www.eea.europa.eu/ publications/TEC25 (accessed on 24 November 2019).
83. Svarstad H., Petersen L.K., Rothman D., Siepel H., Watzold F. Discursive biases of the environmental research framework DPSIR. Land Use Policy 2007. doi:10.1016/j.landusepol.2007.03.005
84. UN Environment Programme. Global environment outlook. GEO 4 environment for development; United Nations environment programme: Valletta, Malta, 2007; Available online: https://www.unenvironment.org/ resources/global-environment-outlook-4 (accessed on 12 October 2019).
85. Lokot M. Whose voices? Whose knowledge? A feminist analysis of the value of key informant interviews. Int. J. Qual. Methods 2021; 20: 1-8. https://doi.org/10.1177/1609406920948775
86. Morse Y.L. Elite interviews in the developing world: Finding anchors in weak institutional environments. Qual. Res. 2019; 19 (3): 277–291. https://doi.org/10.1177/1468794118773245
87. Sharrock W. On owning knowledge. In R. Turner (Ed.), Ethnomethodology: Selected readings (pp. 45–53). Penguin books. 1974. ISBN: 0140809627
88. McKenna S., Iwasaki P.G., Stewart T., Main D.S. Key informants and community members in community-based participatory research: One is not like the other. Progress in community health partnerships: research, education, and action. 2011; 5 (4): 387–397. PMID: 22616206. https://pubmed.ncbi.nlm.nih.gov/22616206/
89. Babbie E. The basics of social research, (5th Edition). Wadsworth cengage learning, 2011. ISBN: 0-534-55953-0
90. Madriz E. Focus Groups in Feminist Research. In: Denzin NK and Lincoln YS (eds) Handbook of Qualitative Research 2nd edition. 2000; 835–850 https://doi.org/10.1016/S0277-5395(97)00080-0
91. Onwuegbuzie A.J., Dickinson W.B., Leech N.L., Zoran A.G. A qualitative framework for collecting and analyzing data in focus group research. Int. J. Qual. Methods 2009; 8(3):1–21. https://doi.org/10.1177/160940690900800
92. Nguyen T.T.H., Ngo T.T.P. Land use/land cover change prediction in Dak Nong Province based on remote sensing and Markov Chain Model and Cellular Automata. Vietnam. Environ. 2018; 9 (3): 132-140. https://doi.org/10.13141/jve.vol9.no3.pp132-140
93. Makwinja R., Kaunda E., Mengistou S., Alamirew T. Impact of land use/ land use dynamics on ecosystem service value—a case from Lake Malombe, Southern Malawi. Environ. Monit. Assess. 2021; 193 (8):1–23. https://doi.org/10.1007/s10661-021-09241-5
94. Tien N.N., Thuy N.T.T. Impact of FDI on economic growth from the sustainable development perspective: a case study from the assessment in the middle of Vietnam. Kasetsart. Soc. Sci. 2020; 41(3):647–652.
95. Salehpour Jam A., Mosaffaie J., Tabatabaei M.R. Management responses for Chehel-Chay Watershed health improvement using the DPSIR framework. Agri. Sci. Tech. 2021; 23. (4): 797-811. https://doi.org/20.1001.1.16807073.2021.23.4.3.2
96. Carrascosa I.P. Large group decision making: Creating decision support approaches at scale. Springer, 2018. https://doi.org/10.1007/978-3-030-01027-0
97. Caldas M.M., Simmons C., Walker R., Perz S., Aldrich S., Pereira R., Leite F., Arima E. Settlement formation and land use and land use change: A case study in the Brazilian Amazon. LAG, 2010; 9(1). https://www.jstor.org/stable/25765288
98. Geist H., McConnell W., Lambin E.F., Moran E., Alves D., Rudel T. Causes and trajectories of land-use/cover change. In land-use and land-cover change: Local processes and global impacts; Lambin, E.F., Geist, H., Eds.; Springer International Publishing: Cham, Switzerland, 2006; pp. 41–70. Gessessew WS (2017) Application of DPSIR framework for assessment of land degradation: a review. Forest 3(1), 4–000. https://doi.org/10.1007/3-540-32202-7_3
99. Long H., Tang G., Li X., Heilig G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River delta economic area of China. Environ. Manage. 2007; 83: 351-364. https://doi.org/10.1016/j.jenvman.2006.04.003
100. Meshesha D.T., Tsunekawa A., Tsubo M., Ali S.A., Haregeweyn N. Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. Reg. Environ. Change 2014; 14: 757–768. https://doi.org/10.1007/s10113-013-0535-2
101. Cervelli E., Pindozzi S., Sacchi M., Capolupo A., Cialdea D., Rigillo M., Boccia L. Supporting land use change assessment through ecosystem services and wildlife indexes. Land Use Policy 2017; 65: 249–265. https://doi.org/10.1016/j.landusepol.2017.04.011