Effects of water deficit on grain yield and yield components of Narrow-leaved plantain (Plantago lanceolata L.)

Document Type : Original Research

Authors
1 Faculty of Agriculture Sciences and Food Industries, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Abstract
Aims: Drought limits plant growth and productivity throughout the world. Narrow-leaved plantain (Plantago lanceolata L.) is widely used to treat some human diseases and reduce antibiotic nutrition. This study aimed to examine the response of four local ecotypes of P. lanceolata to different drought stress levels in a field experiment.

Materials & Methods: A split-plot design was conducted using a randomized complete block design (RCBD) with three replications at the farm of Research Institute of Forests and Rangelands, Karaj, Iran, 2018. The main factor was drought stress at three levels (D1= normal irrigation, D2= drought stress after the flowering stage with supplemental irrigation at the filling stage, and D3= stop irrigation after flowering. The second factor contained four ecotypes: G1-Arak, G2-Khoramabad, G3-Meshkinshahr1, and G4-Meshkinshar2. Data were collected and statistically analyzed for grain yield and yield components.

Findings: Results showed a significant effect of drought stress and ecotype on all traits except root lengths (p<0.05). The ecotype × drought stress interaction effects were significant for spike number per plant, leaf number per plant, leaf width, and plant height (p<0.05). The mean values of grain yield in D1, D2, and D3 were 729.41, 660.81, and 595.95 kg.h-1, respectively.

Conclusion: The highest grain yield of 670.92 kg.h-1 was obtained from G1-Arak. This ecotype produced higher grain yields under mild and severe stress than the other ecotypes and was recommended for breeding improved varieties.
Keywords

Subjects


[1] Daneshian, J., Ahmadi, M., Kalantarahmadi, S.A. Stability evaluation of advanced soybean lines (Glycine max L.) in drought conditions using GGE-Biplot analysis and Ammi. Crop Production Journal, 2022; 15(4): 119-138. (In Persian). https://ejcp.gau.ac.ir/article_6365.html.
[2] Mahajan S., Tuteja N. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 2005; 444(2):139-158. https://pubmed.ncbi.nlm.nih.gov/16309626.
[3] Wang W.X., Vinocur B., Shoseyov O., Altman A. Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hortic. 2001; 560:285-292. https://doi.org/10.17660/ActaHortic.2001.560.54.
[4] Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms, and management. Agronomy for Sustainable Development 2009; 29: 185- 212. https://hal.science/hal-00886451.
[5] Barnabas B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ. 2008; 31(1): 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x.
[6] Belayet H.M., Rahman W., Rahman M.N., Noorul Anwar A.H.M., Hossen A.K.M. Effects of water stress on yield attributes and yield of different mung bean genotypes. Afr. J. Biochem. Res. 2010; 5:19-24. https://www.researchgate.net/publication/279621844.
[7] Xiaolong J., Chunyan H. and Xudan G. Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae): a review. International Int. J. Biol. Macromol. 2019; 135:637-646. https://pubmed.ncbi.nlm.nih.gov/31152836.
[8] Goncalves S., Romano A. The medicinal potential of plants from the genus Plantago (Plantaginaceae). Ind. Crops Prod. 2016; 83: 213–226. https://www.sciencedirect.com/science/article/abs/pii/S0926669015306300.
[9] Mohsenzadeh, S., Nazeri, V. & Mirt adzadini, S. M.: 2008 06 30: Chromosome numbers of fifteen species of Plantago L. (Plantaginaceae) from Iran. –Iran. J. Bot. 14 (1): 47-53. Tehran. https://www.researchgate.net/publication/286143117.
[10] Jankovi T., Zduni G., Beara I. Comparative study of some polyphenols in Plantago species. Biochem. Syst. Ecol. 2012; 42:69-74. https://www.sciencedirect.com/science/article/abs/pii/S0305197812000245.
[11] Kreitschitz, A., Kovalev, A., Gorb, S.N. “'Sticky Invasion'-the Physical. Properties of Plantago Lanceolata L. Seed Mucilage”. Beilstein Journal of Nanotechnology 2016; 7(1):1918-1927. https://www.beilstein-journals.org/bjnano/articles/7/183.
[12] Amininasab, S.S, Mahmoudi Otaghvari, A. and Nazifi, E. Palynological study of Plantago major and P. lanceolata in north of Iran Rostaniha 2020; 21(1): 38-48 (In Persian). https://rostaniha.areeo.ac.ir/article_121722.html.
[13] Temur C., Uslu, S. Effects of Plantain (Plantago anceolata) containing diets of quails on growth performance, carcass characteristic, some blood parameters and mast cell. Yuzuncu Yil Univ. J. Agric. Sci. 2019; 29(1):114–120. https://www.researchgate.net/publication/333133577.
[14] Oloumi M.M., Vosough D., Derakhshanfar A., Nematollahi M.H. The healing potential of Plantago lanceolata ointment on collagenase-induced tendinitis in Burros (Equus asinus). J. Equine Vet. Sci. 2011; 31(8):470–474. https://www.researchgate.net/publication/233869839.
[15] Foster, L. Herbs in pastures. Development research in Britain, 1850–1984. Biol. Agric. Hortic. 1988; 5(2):97–133. https://www.tandfonline.com/doi/abs/10.1080/01448765.1988.9755134.
[16] Pol M., Schmidtke K., Lewandowska, S. Plantago lanceolata – An overview of it’s agronomically and healing valuable features. Open Agric. 2021; 6:479–488. https://www.degruyter.com/document/doi/10.1515/opag-2021-0035/html.
[17] Bhagat N.R. Studies on Variation and association among seed yield and some component traits in Plantago ovata Forsk. Crop Improve. 1980; 7:60-63. https://www.cabdirect.org/cabdirect/abstract/19831625302.
[18] Kaswan, V., Kaushik, A., Devi, J., Joshi, A. and Ratan Maloo, S. Genetic association studies for yield and yield contributing traits in Plantago ovata Forsk. Electronic Journal of Plant Breeding, 2018; 9(1): 51-59. https://www.researchgate.net/publication/324526304.
[19] Steel R.G.D., Torrie J.H. Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York 1980. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=383208.
[20] Levene, H.. Robust tests for equality of variances in contribution to probability and Statistics, (Ed) 1. Olkin: Stanford University Press, Palo Alto. California, USA. 1960. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=2363177.
[21] Akhzari D. and Ghasemi Aghbash F. Effect of Salinity and Drought Stress on the Seedling Growth and Physiological Traits of Vetiver Grass (Vetiveria zizanioides stapf.) ECOPERSIA. 2013; 1(4). 339-352. http://ecopersia.modares.ac.ir/article-24-8075-en.html.
[22] Saberi, M., , Shahriari, A., Niknahad-Gharmakher, H., Heshmati G., Barani, H. Effects of Different Drought and Salinity Levels on Seed Germination of Citrullus colocynthis. ECOPERSIA 2017, 5(3):1903-1917. http://ecopersia.modares.ac.ir/article-24-11809-en.html.
[23] Najafi F., Rezvani Moghaddam P. Effects of irrigation regimes and plant density on yield and agronomic characteristics of isabgol (Plantago ovata). Journal of Agricultural Science and Technology 2002; 16(2):59-65. https://www.researchgate.net/publication/289385066.
[24] Koocheki, A. Tabrizi L. and Nassiri Mahallati, M.. The Effects of Irrigation Intervals and Manure on Quantitative and Qualitative Characteristics of Plantago ovata and Plantago psyllium. Asian Journal of Plant Sciences, 2007; 6: 1229-1234. https://scialert.net/abstract/?doi=ajps.2007.1229.1234.
[25] Koocheki A., Tabrizi L., Nassiri Mahallati, M. Organic cultivation of P. ovata and P. psyllium in response to water stress. Iran. J. Field Crop Sci. 2004; 2(1):67-78. (In Persian). https://doi.org/10.22067/gsc.v2i1.1165.
[26] Pirasteh-Anosheh H., Emam Y., Ashraf M., Foolad M.R. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Biol. Res. 2012; 11(4):501–520. https://www.semanticscholar.org/paper/Exogenous-Application-of-Salicylic-Acid-and-Effects-Anosheh-Emam/afb77f654bbed75a9e7cf0d4ef4c345a19ff5b35.
[27] Blum, A. Drought resistance, water-use efficiency, and yield potential, are they compatible, dissonant, or mutually exclusive. Aust. J. Agric. Resour. Econ. 2005; 56: 1159-1168. https://www.researchgate.net/publication/254914567.
[28] Neumann, P. M. Cropping mechanisms for crop plants in drought-prone environments. Ann. Bot. 2008; 101(7): 901-907. https://academic.oup.com/aob/article/101/7/901/132812.
[29] Xue Q., Zhu Z., Musick J.T., Stewart, B.A., Dusek D.A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil. 2003; 257:151-161. http://dx.doi.org/10.1023/A:1026230527597.
[30] Koocheki A., Mokhtari V., Taherabadi Sh., Kalantari S. The effect of water stress on yield, yield components and quality characteristics of Plantago ovata and P. psyillium. J. Soil Water Conserv. 2011; 25(3): 656-664 (In Persian). https://doi.org/10.22067/jsw.v0i0.9700.
[31] Patra D.D., Anwar M., Singh S., Prasad A., Singh D.V. Aromatic and medicinal plants for salt and moisture stress condition. Recent Advances in management of arid ecosystem. Proceeding of a Symposium Held in India. 1999; 347-350. https://scholar.google.co.in/scholar?hl=en&as_sdt=0,5&cluster=9108990058722727300.
[32] Mousavinick M. Effect of drought stress and Sulphur fertilizer on quantity and quality yield of psyllium (Plantago ovata L.) in Baluchestan. J. Agroecol. 2012; 4(2):170-182.(In Persian) https://agry.um.ac.ir/article_31372.html.
[33] Bernal M., Estiarte M. and Penuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 2011; 13:252-257. https://doi.org/10.1111/j.1438-8677.2010.00358.x.
[34] Roumani A., Biabani A., Rahemi Karizaki A., Gholamalipour Alamdari E., Gholizadeh A. The response of quantitative and qualitative characteristics of Isabgol (Plantago ovata Forssk.) to foliar application of salicylic acid and spermine under drought stress conditions. Environ. Stresses Crop Sci. 2020; 13(2):503-517. (In Persian). https://doi.org/10.22077/escs.2019.1948.1474.
[35] Ramroudi M., Galavi M., Siahsar B.A., Allahdo M. Effect of micronutrient and irrigation deficit on yield and yield components of isabgol (Plantago ovata Forsk) using multivariate analysis. J. Sci. Food Agric. 2011; 9(1):247–251. https://www.researchgate.net/publication/287368112.
[36] Asgharipour, M. and Rafiei, M. Inter cropping of Isabgol (Plantago ovata L.) and Lentil as Influenced by Drought Stress American-Eurasian J. Agric. & Environ. Sci., 2010; 9 (1): 62-69. https://www.researchgate.net/publication/228742529.
[37] Toghraei A., Mirshekari B., Daneshian J., KazemiArbat H., Mohasses Mostashari M. Effect of Fertilizers Containing Nitrogen on Yield and Mucilage of Isabgol (Plantago ovata L.) in Irrigation and Cutting off Irrigation. J. Crop Ecophysiol. 2017; 11(4):791-804 (In Persian). https://jcep.tabriz.iau.ir/article_539519.html?lang=en.
[38] Pouryousef M., Mazaheri D., Chaiechi M.R., Rahimi A., Jafari A.A. Effects of different soil fertilizing treatment (chemical, organic and integrated) on yield and yield components and seed mineral nutrient content of Isabgol (Plantago ovata Forsk). Agron. J. 2014; 102:82-91. (In Persian). https://doi.org/10.22092/aj.2014.100933.
[39] Rahimi A., Jahansoz M.R., Rahimian Mashhadi H. Effect of Drought Stress and Plant Density on Quantity and Quality Characteristics of Isabgol (Plantago ovata) and French Psyllium. J. Crop Prod. Process. 2014; 4(12):143-155 (In Persisn). https://jcpp.iut.ac.ir/browse.php?a_id=2149&sid=1&slc_lang=en.
[40] Dewey D.R., Lu K.H. A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agron. J. 1959; 51:515 -518. https://doi.org/10.1007/BF00226087.