Influence of Enzyme Type and Hydrolysis Time on Antioxidant Activity of Hydrolyzed Protein from Longtail Tuna (Thunnus tonggol) Dark Muscle

Document Type : Original Research

Authors
1 Ph.D. student, marine biology department, faculty of natural resources and marine science, Tarbiat Modares University
2 associated professor, marine biology department, faculty of natural resources and marine science
3 Professor, Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
4 Professor, Department of Genetic, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Aim: In this study, the antioxidant properties of hydrolyzed protein from longtail tuna dark muscle with commercial enzymes (alcalase, alkaline protease, and evatase) were investigated.

Materials & Methods: Protein hydrolysates from tuna dark muscle were prepared by different enzymes Degree of hydrolysis (DH) was performed by TCA technique. The five aliquots at 60, 180, 240, 300, and 360 min were gathered during hydrolysis. The antioxidant activity of aliquots was monitored by in vitro assays (DPPH inhibition ability and Ferric (Fe3+) reducing power).

Findings: The antioxidant activities of protein hydrolysate from tuna dark muscle (TDM) increase with increasing time and DH. Alcalase hydrolyzed protein (AHP) generally showed higher antioxidative activity than evatase hydrolyzed protein (EHP) and alkaline protease hydrolyzed protein (APHP). Among the samples (concentration 3 mg.ml-1), AHP at 360 min significantly exhibited the highest ability to scavenge DPPH radical (72.6 %). Furthermore, AHP and APHP significantly showed a minimum IC50 value of 1.1 mg.ml-1 at 240 and 360 min hydrolysis. APHP significantly exhibited the highest ferric reducing power of 0.83 at 300 min and 0.76 at 240 min. AHP and APHP significantly showed the highest ferric reducing power of 0.74 at 360 min (p < 0.05).

Conclusion: This study confirmed that protein hydrolysate from TDM could be a good source of antioxidant peptides. In addition, the antioxidant activity of hydrolyzed protein relay on protease type and hydrolysis condition.

Keywords

Subjects


1. Nazari Bajgan A., Yasemi M., Darvishi M., Kamrani E. Fishing pattern maximum constant yield (MCY) and recruitment pattern of Thunnus tonggol in Hormozgan province. Iran. J. Fish. Sci. 2012; 1; 20(477):129–38. http://isfj.ir/browse.php?a_id=523&sid=1&slc_lang=en
2. Haghi Vayghan A., Hashemi S.A., Kaymaram F. Estimation of fisheries reference points for Longtail tuna (Thunnus tonggol) in the Iranian southern waters (Persian Gulf and Oman Sea). Iran. J. Fish. Sci. 2021; 10; 20 (3):678–93. http://jifro.ir/article-1-4462-en.html
3. Kaymaram F., Darvishi M., Behzadi S., Ghasemi S. Population dynamic parameters of Thunnus tonggol (Bleeker, 1851) in the Persian Gulf and Oman Sea. Iran. J. Fish. Sci. 2013; 10; 12(4):855–63. https://jifro.ir/article-1-1358-en.html.
4. Guerard F., Guimas L., Binet A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Molec. Catalysis B: Enzymatic. 2002; 2; 19–20:489–98. https://doi.org/10.1016/S1381-1177(02)00203-5
5. Sánchez-Zapata E., Amensour M., Oliver R., Fuentes-Zaragoza E., Navarro C., Fernández-López J. Quality characteristics of dark muscle from yellowfin tuna Thunnus albacares to its potential application in the food industry. Food. Nutri. Sci. 2011; 2, 22-30. https://cyberleninka.org/article/n/831219
6. Harnedy P.A., FitzGerald R.J. Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods. 2012; 1; 4(1):6–24. https://doi.org/10.1016/j.jff.2011.09.001
7. Ramezanzade L., Hosseini S.F., Nikkhah M., Arab-Tehrany E. Recovery of bioactive peptide fractions from rainbow trout (Oncorhynchus mykiss) processing waste hydrolysate. ECOPERSIA. 2018; 10; 6(1):31–40. https://ecopersia.modares.ac.ir/article-24-17233-en.html.
8. Emadi Shaibani M., Heidari B., Khodabandeh S., Shahangian S. Isolation of bioactive peptides from rocky shore crab, Grapsus Albolineatus, protein hydrolysate with cytotoxic activity against 4T1 cell line. ECOPERSIA. 2019; 10; 7(3):175–81. https://ecopersia.modares.ac.ir/article-24-30565-en.html.
9. Mada S.B., Ugwu C.P., Abarshi M.M. Health promoting effects of food-derived bioactive peptides: a review. Int. J. Pept. Res. Ther. 2020; 26(2):831–48. doi:10.3390/nu11102545
10. Le Gouic A.V., Harnedy P.A., FitzGerald R.J. Bioactive peptides from fish protein by-products. Bioact. Molec. Food. 2018. https://doi.org/10.1007/978-3-319-54528-8_29-1
11. Nurdiani R., Vasiljevic T., Yeager T., Singh T.K., Donkor O.N. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. Eur. Food. Res. Technol. 2017; 1; 243(4):627–37. https://link.springer.com/article/10.1007/s00217-016-2776-z
12. Valcarcel J., Sanz N., Vázquez J.A. Optimization of the enzymatic protein hydrolysis of by-products from seabream (Sparus aurata) and seabass (Dicentrarchus labrax), chemical and functional characterization. Foods. 2020; 20; 9(10). https://doi.org/10.3390/foods9101503
13. Vieira E.F., Ferreira I.M.P.L.V.O. Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. Inter. J. Food. Proper. 2017; 4; 20(3):662–73. https://doi.org/10.1080/10942912.2016.1176036
14. Chansuwan C., Chinachoti P. Antioxidative properties and hydrolysis profile of skipjack tuna dark muscle and skin. Int. Food. Res. J. 2015; 22(5): 1968-1976. http://www.ifrj.upm.edu.my/22%20(05)%202015/(34)
15. Chi C.F., Hu F.Y., Wang B., Li Z.R., Luo H.Y. Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle. Mar. Drugs. 2015; 27;13 (5):2580–601. https://doi.org/10.3390%2Fmd13052580
16. Hsu K.C. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food. Chem. 2010; 1; 122(1):42–8. https://doi.org/10.1016/j.foodchem.2010.02.013
17. Klaunig J.E., Kamendulis L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004; 44:239–67. http://doi: 10.1146/annurev.pharmtox.44.101802.121851
18. Lorenzo J.M., Munekata P.E.S., Gómez B., Barba F.J., Mora L., Pérez-Santaescolástica C, et al. Bioactive peptides as natural antioxidants in food products – A review. Trends. Food. Sci. Technol. 2018; 1; 79:136–47. https://doi.org/10.1016/j.tifs.2018.07.003
19. Unnikrishnan P., Kizhakkethil B.P., George J.C., Aliyamveetil Abubacker Z., Ninan G., Chandragiri Nagarajarao R. Antioxidant peptides from dark meat of yellowfin tuna (Thunnus albacares): process optimization and characterization. Waste. Biomass. Valor. 2021; 1; 12 (4):1845–60. https://doi.org/10.1007/s12649-020-01129-8
20. Zhao G.X., Yang X.R., Wang Y.M., Zhao Y.Q., Chi C.F., Wang B. Antioxidant peptides from the protein hydrolysate of Spanish mackerel (Scomberomorous niphonius) muscle by in vitro gastrointestinal digestion and their in vitro activities. Mar .Drugs. 2019;12;17(9). https://doi.org/10.3390/md17090531
21. Esmaeili Kharyeki M., Rezaei M., Khodabandeh S., Motamedzadegan A. Antioxidant activity of protein hydrolysate in skipjack tuna head. Fish. Sci. Technol. 2018; 10; 7(1):57–64. https://jfst.modares.ac.ir/article-6-13782-en.html
22. Pezeshk S., Ojagh S.M., Rezaei M., Shabanpour B. Antioxidant and antibacterial effect of protein hydrolysis of yellowfin tuna waste on flesh quality parameters of minced silver carp. J. Gen. Res. 2017; 1; 3(2):103–12. https://sc.journals.umz.ac.ir/article_1760.html
23. Saidi S., Deratani A., Belleville M.P., Ben Amar R. Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food. Res. Int. 2014; 1; 65:329–36. https://doi.org/10.1016/j.foodres.2014.09.023
24. 8. Fish | OECD-FAO Agricultural Outlook 2021-2030 | OECD iLibrary [Internet]. [cited 2022 Aug 29]. Available from: https://www.oecd ilibrary.org/sites/34097d76en/index.html?itemId=/content/component/34097d76-en
25. Ovissipour M., Abedian Kenari A., Motamedzadegan A., Nazari R.M. Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food. Bioprocess. Technol. 2012; 1:5(2):696–705. https://link.springer.com/article/10.1007/s11947-010-0357-x
26. Takalloo Z, Nemati R, Kazemi M, Ghafari H, HasanSajedi R. Acceleration of yeast autolysis by addition of fatty acids, ethanol and alkaline protease. Iran. J Biotechnol. 2022; 20(3):e3036. http://www.ijbiotech.com/article_152858.html
27. Hoyle N, Merritt JH. Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food. Sci. 1994; http://doi:10.1111/J.1365-2621.1994.TB06901.X
28. Yang X.R., Qiu Y.T., Zhao Y.Q., Chi C.F., Wang B. Purification and characterization of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa. Mar. Drugs. 2019; 27:17(5):251. https://doi.org/10.3390/md17050251
29. Chalamaiah M., Jyothirmayi T., Diwan P.V., Dinesh Kumar B. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J. Food. Sci. Technol. 2015; 52(9):5817–25. doi:10.1007/s13197-015-1714-6.
30. A Global Tuna Valuation: Netting Billions 2020. [cited 2022 Aug 29]. Available from: https://pew.org/33Z5QbO.
31. Abd Aziz N., Shamsudin Ahmad A., Ghazali A., Ahmad N., Ali A., Ong M.CH. Comparison of proximate composition of raw and cooked intramuscle tissue of Thunnus tonggol from Terengganu Malaysia. Pertanika J. Sci. Technol. 2021. 29 (1): 629-639
32. Noman A., Qixing J., Xu Y., Ali A.H., Al-Bukhaiti W..Q, Abed S.M, et al. Influence of degree of hydrolysis on chemical composition, functional properties, and antioxidant activities of Chinese sturgeon (Acipenser sinensis) hydrolysates obtained by using alcalase 2.4L. J. Aquat. Food Prod. Technol. 2019; 3:28(6):583–97. https://doi.org/10.1080/10498850.2019.1626523.
33. Bougatef A., Balti R., Haddar A., Jellouli K., Souissi N., Nasri M. Protein hydrolysates from bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnol. Bioproc. Eng. 2012; 1:17(4):841–52. https://link.springer.com/content/pdf/10.1007/s12257-012-0053-y.pdf
34. Klomklao S., Benjakul S. Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) Viscera. J. Food. Process. Preserv. 2017; 41(3):e12970.
35. Dong S., Zeng M., Wang D., Liu Z., Zhao Y., Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food. Chem. 2008; 15:107(4):1485–93. https://doi.org/10.1016/j.foodchem.2007.10.011
36. Wu H.C., Chen H.M., Shiau C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food. Res. Int. 2003; 1:36 (9):949–57. https://doi.org/10.1016/S0963-9969(03)00104-2
37. Saidi S., Deratani A., Belleville M.P., Amar R.B. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food. Res. Int. 2014; 1:65:453–61. http://dx.doi.org/10.1016/j.foodres.2014.04.026
38. Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J. Food. Sci. Technol. 2011; 48(4):412–22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551182/
39. Ngyuen H.T., Bao H.N.D., Dang H.T.T., Tomasson T., Arason S., Gudjonsdottir. Protein characteristics and bioactivity of fish protein hydrolysates from tra catfish (Pangasius hypophthalmus) side stream isolates. 2022. Foods. 11, 4102. https://doi.org/10.3390/foods11244102
40. Yarnpakdee S., Benjakul S., Kristinsson H.G., Kishimura H. Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis. J. Food. Sci. Technol. 2015; 52(6):3336. https://doi.org/10.1007%2Fs13197-014-1394-7
41. Theodore A.E., Raghavan S., Kristinsson H.G. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J. Agric. Food. Chem. 2008; 27:56(16):7459–66. https://doi.org/10.1021/jf800185f
42. Klompong V., Benjakul S., Kantachote D., Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food. Chem. 2007; 1;102(4):1317–27. https://doi.org/10.1016/j.foodchem.2006.07.016
43. Mongkonkamthorn N., Malila Y., Regenstein J.M., Wangtueai S. Tuna dark muscle meat hydrolysate with antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities. J. Aquat. Food. Prod. Technol. 2021; 30: 1090-1108. https://doi.org/10.1080/10498850.2021.1974138
44. Yang P., Ke H., Hong P., Zeng S., Cao W. Antioxidant activity of bigeye tuna (Thunnus obesus) head protein hydrolysate prepared with Alcalase. Inter. J. Food. Sci. Technol. 2011;46(12):2460–6. https://doi.org/10.1111/j.1365-2621.2011.02768.x
45. Chen X., Hu X., Li L., Yang X., Wu Y., Lin W., Zhao Y., Ma H., Wei Y. Antioxidant properties of tilapia component protein hydrolysates and the membrane ultrafiltration fractions. Adv. Mat. Res. 2015; 1073–1076, 1812–1817. https://doi.org/10.4028/www.scientific.net/AMR.1073-1076.1812
46. Racz. A., Papp. N., Balogh. E., Fodor. M., Heberger. K. Comparison of antioxidant capacity assays with chemo metric methods. Anal. Methods. 2015; 7, 4216-4224. http://doi: 10.1039/C5AY00330J