1. Edwards C.A., editor The use of earthworms in the breakdown and management of organic wastes. Earthworm Ecology 1998; Boca Raton, FL: CRC Press.
2. Gudeta K., Bhagat A., Julka J.M., Sinha R., Verma R., Kumar A., Kumari S., Ameen F., Bhat S.A., Amarowicz R., Sharma M. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae. 2022; 8:1-10. https://www.mdpi.com/2311-7524/8/4/311
3. Edwards C.A., Fletcher K. Interactions between earthworms and microorganisms in organic-matter breakdown. Agric., Ecosyst. Environ. 1988; 24(1):235-47. https://www.sciencedirect.com/science/article/abs/pii/0167880988900692
4. Angelova V., Akova V., Artinova N., Ivanov K. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agri. Sci. 2013; 19:958-71. https://www.agrojournal.org/19/05-10.pdf
5. Edwards C.A., Burrows I. Potential of earthworm composts as plant growth media. The Netherlands: SPB Academic Press; 1988. 21-32 p.
6. Tomati U., Grappelli A., Galli E., editors. The presence of growth regulators in earthworm-worked wastes. On Earthworms. Proceedings of International Symposium on Earthworms. Selected Symposia and Monographs; 1987; :union:e Zoologica Italiana, Modena.
7. Joshi R., Singh J., Vig A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotech. 2015; 14(1):137-59. https://link.springer.com/article/10.1007/s11157-014-9347-1
8. Zaremanesh H., Akbari N., Eisvand H.R., Ismaili A., Feizian M. The Effect of Humic Acid on Soil Physicochemical and Biological Properties under Salinity Stress Conditions in Pot Culture of Satureja khuzistanica Jamzad. ECOPERSIA. 2020; 8(3):147-54. http://ecopersia.modares.ac.ir/article-24-36098-en.pdf
9. Sofi A., Ebrahimi M., Shirmohammadi E. Influence of humic acid on germination, morphological characteristics and photosynthesis pigments of Trifolium alexandrium L. under salinity stress. ECOPERSIA. 2021; 9(4):287-97. http://ecopersia.modares.ac.ir/article-24-56216-en.pdf
10. Ebrahimi M., Miri E. Effect of Humic Acid on Seed Germination and Seedling Growth of Borago officinalis and Cichorium intybus. ECOPERSIA. 2016; 4(1):1239-49. http://ecopersia.modares.ac.ir/article-24-8389-en.pdf
11. Banerjee A., Datta J.K., Mondal N.K. Changes in morpho-physiological traits of mustard under the influence of different fertilizers and plant growth regulator cycocel. J. Saud. Soc. Agri. Sci. 2012; 11(2):89-97. https://www.sciencedirect.com/science/article/pii/S1658077X11000543
12. Getnet M., Raja N. Impact of Vermicompost on Growth and Development of Cabbage "Brassica oleracea" Linn. and their Sucking Pest," Brevicoryne brassicae" Linn. (Homoptera: Aphididae). Res. J. Environ. Earth Sci. 2013; 5(3):104-12. https://pdfs.semanticscholar.org/2acf/8ac49b4a7ff9a45c37ac63e5ad8d510bd05f.pdf
13. Javed S., Panwar A. Effect of biofertilizer, vermicompost and chemical fertilizer on different biochemical parameters of Glycine max and Vigna mungo. Rec. Res. Sci. Tech. 2013; 5(1):40-4. https://updatepublishing.com/journal/index.php/rrst/article/view/1005
14. Khan A., Ishaq F. Chemical nutrient analysis of different composts (Vermicompost and Pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian J. Plant Sci. Res. 2011; 1(1):116-30. https://www.imedpub.com/abstract/chemical-nutrient-analysis-of-different-composts-vermicompost-and-pitcompost-and-their-effect-on-the-growth-of-a-vegetative-crop-pisum-sativum-12312.html
15. Mirakalaei S., Ardebill Z., Mostafavi M. The effects of different organic fertilizers on the growth of lilies (Lillium longiflorum). Inter. Res. J. Appl. Bas. Sci. 2013; 4(1):181-6. https://www.cabdirect.org/cabdirect/abstract/20133337456
16. Papathanasiou F., Papadopoulos I., Tsakiris I., Tamoutsidis E. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agri. Environ. 2012; 10(2):677-82. https://www.cabdirect.org/cabdirect/abstract/20123207838
17. Paul S., Bhattacharya S.S. Vermicomposted water hyacinth enhances growth and yield of marigold by improving nutrient availability in soils of north bank plain of Assam. Research & Reviews: Journal of Agricultural Science and Technology. 2012; 1(1):2-6. https://sciencejournals.stmjournals.in/index.php/RRJoAST/article/view/803
18. Yassen A.A., Abd El-Salam A.M.E., Salem S.A., Sahar M., M. Z., Khaled S.M. Impact of vermicompost on growth; development and green peach aphid Myzus persicae Sulzer (Hemiptera: Aphididae) infestations in pot Marigold. Glob. Adv. Res. J. Agri. Sci. 2015; 4(12):911-8. https://www.semanticscholar.org/paper/Impact-of-Vermicompost-on-Growth-and-Development-of-Getnet-Raja/2acf8ac49b4a7ff9a45c37ac63e5ad8d510bd05f
19. Joshi R., Vig A.P., Singh J. Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: a field study. Inter. J. Recyc. Organ. Waste Agri. 2013; 2(1):16. https://link.springer.com/article/10.1186/2251-7715-2-16
20. Raza S.T., Zhu B., Yao Z., Wu J., Chen Z., Ali Z., Tang J.L. Impacts of vermicompost application on crop yield, ammonia volatilization and greenhouse gases emission on upland in Southwest China. Sci. Total Environ. 2023; 860:160479. https://www.sciencedirect.com/science/article/pii/S0048969722075817
21. Rehman S.u., De Castro F., Aprile A., Benedetti M., Fanizzi F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy. 2023; 13(4):1134. https://www.mdpi.com/2073-4395/13/4/1134
22. Antolovich M., Prenzler P., Robards K., Ryan D. Sample preparation in the determination of phenolic compounds in fruits. Analyst. 2000; 125(5):989-1009. https://pubs.rsc.org/en/content/articlelanding/2000/an/b000080i
23. Lattanzio V. Relationship of Phenolic Metabolism to Growth in Plant and Cell Cultures Under Stress. In: Ramawat K.G., Ekiert H.M., Goyal S., editors. Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications. Cham: Springer International Publishing; 2019. p. 1-32.
24. Dar S.A., Wani A.B., Mushtaq, Ganie A., Kandoo A.A., Wani M.Y. Resistance against insect pests by phenolics and their derivative compounds. J. Crop Weed. 2017; 13(2):187-93. https://www.cabdirect.org/cabdirect/abstract/20183008201
25. Duthie G.G., Gardner P.T., Kyle J.A. Plant polyphenols: are they the new magic bullet? Proc. Nutri. Soc. 2003; 62(03):599-603. https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/plant-polyphenols-are-they-the-new-magic-bullet/14BCC2E15A7C60AF840A1E2C24CB5162
26. Hu F.B. Plant-based foods and prevention of cardiovascular disease: an overview. Ameri. J. Clin. Nutri. 2003; 78(3):544S-51S. https://academic.oup.com/ajcn/article/78/3/544S/4689995
27. Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.-P., Pihlaja K., Kujala T.S., Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999; 47(10):3954-62. https://pubs.acs.org/doi/10.1021/jf990146l
28. Hättenschwiler S., Vitousek P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 2000; 15(6):238-43. https://www.sciencedirect.com/science/article/abs/pii/S0169534700018619
29. Asami D.K., Hong Y.-J., Barrett D.M., Mitchell A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003; 51(5):1237-41. https://pubmed.ncbi.nlm.nih.gov/12590461/
30. Dixon R.A. Natural products and plant disease resistance. Nature. 2001; 411(6839):843-7. https://www.nature.com/articles/35081178
31. Grusak M.A., DellaPenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Biol. 1999; 50(1):133-61. https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.50.1.133
32. Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lucht C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia. 2005; 49(4):297-306. https://www.sciencedirect.com/science/article/abs/pii/S003140560500017X
33. Arancon N.Q., Edwards C.A., Yardim E.N., Oliver T.J., Byrne R.J., Keeney G. Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Protect. 2007; 26(1):29-39. https://www.sciencedirect.com/science/article/abs/pii/S0261219406000809
34. Edwards C.A., Dominguez J., Arancon N.Q. The influence of vermicompost on plant growth and pest incidence. Soil Zoology for Sustainable Development in the 21st century. Cairo. 2004:397-420. http://jdguez.webs.uvigo.es/wp-content/uploads/2011/10/The-influence-of-vermicompost-on-plant-growth-and-pest-incidence.pdf
35. Razmjou J., Mohammadi M., Hassanpour M. Effect of vermicompost and cucumber cultivar on population growth attributes of the melon aphid (Hemiptera: Aphididae). J. Econ. Entomol. 2011; 104(4):79-83. https://academic.oup.com/jee/article/104/4/1379/2199673
36. Yardim E.N., Arancon N.Q., Edwards C.A., Oliver T.J., Byrne R.J. Suppression of tomato hornworm (Manduca quinquemaculata) and cucumber beetles (Acalymma vittatum and Diabotrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia. 2006; 50(1):23-9. https://www.sciencedirect.com/science/article/abs/pii/S0031405605000867
37. Gorji Z., Mehrparvar M., Mansouri S.M. Cascading effects of soil organic and inorganic fertilizers on tri-trophic interactions: Plant–aphid–parasitoid wasp as a study system. J. Appl. Entomol. 2023; 147:126–39. https://onlinelibrary.wiley.com/doi/abs/10.1111/jen.13048
38. Chaplin M., Westwood M. Relationship of nutritional factors to fruit set. J. Plant Nutr. 1980; 2(4):477-505. https://www.tandfonline.com/doi/abs/10.1080/01904168009362791?journalCode=lpla20
39. Guidi L., Lorefice G., Pardossi A., Malorgio F., Tognoni F., Soldatini G. Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency. Biol. Plant. 1997; 40(2):235-44. https://link.springer.com/article/10.1023/A:1001068603778
40. Jain V., Pal M., Lakkineni K., Abrol Y. Photosynthetic characteristics in two wheat genotypes as affected by nitrogen nutrition. Biol. Plant. 1999; 42(2):217-22. https://link.springer.com/article/10.1023/A:1002156517792
41. Mordhorst A., Lörz H. Embryogenesis and development of isolated barley (Hordeum vulgare L.) microspores are influenced by the amount and composition of nitrogen sources in culture media. J. Plant Physiol. 1993; 142(4):485-92. https://www.sciencedirect.com/science/article/abs/pii/S0176161711812563
42. Novoa R., Loomis R. Nitrogen and plant production. Plant Soil. 1981; 58(1-3):177-204. https://link.springer.com/article/10.1007/BF02180053
43. Wajid N., Ashfaq A., Asghari B., Rabiu O., Muhammad U., Tasneem K., Aftab W., Hafiz Mohkum H., Muhammad M., Muzzammil H. Effect of nitrogen on yield and oil quality of sunflower (Helianthus annuus L.) hybrids under sub humid conditions of Pakistan. Ameri. J. Plant Sci. 2012; 3:243-51. https://www.scirp.org/journal/paperinformation.aspx?paperid=17565
44. Ravi S., Channal H., Ananda N. Response of sulphur, zinc and iron nutrition on yield components and economics of safflower (Carthamus tinctorius L.). Asian J. Soil Sci. 2008; 3(1):21-3. https://www.connectjournals.com/file_html_pdf/657701H_21-23a.pdf
45. Ozturk E., Polat T., Sezek M. The effect of sowing date and nitrogen fertilizer form on growth, yield and yeild components in sunflower. Turk. J. Field Crops. 2017; 22(1):143-51. https://dergipark.org.tr/tr/download/article-file/477294
46. Dordas C.A., Sioulas C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res. 2009; 110(1):35-43. https://www.sciencedirect.com/science/article/abs/pii/S0378429008001330
47. Kaffka S.R., Kearney T.E. Safflower production in California. University of California: Agriculture and Natural Resources Publication; 1998. 21565 p.
48. Tuncturk M., Yildirim B. Effects of different forms and doses of nitrogen fertilizers on safflower (Chartamus tinctorius L.). Pakis. J. Biolog. Sci. 2004; 7(8):1385-9. https://scialert.net/abstract/?doi=pjbs.2004.1385.1389
49. Nasr H., Katkhuda N., Tannir L. Effects of N fertilization and population rate-spacing on safflower yield and other characteristics. Agron. J. 1978; 70(4):683-5. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1978.00021962007000040037x
50. Strasil Z., Vorlicek Z. The effect of nitrogen fertilization, sowing rates and site on yields and yield components of selected varieties of safflower (Carthamus tinctorius L.). Rostlinna vyroba. 2002; 48(7):307-11. https://www.agriculturejournals.cz/pdfs/pse/2002/07/04.pdf
51. Weiss E. Oilseed Crops. London: Blackwell Science; 2000. p. 373.
52. Bagheri H., Sam-Daliri M. Effect of water stress on agronomic traits of spring safflower cultivars (Carthamus tinctorius L.). Aust. J. Basic Appli. Sci. 2011; 5(12):2621-4. http://ajbasweb.com/old/ajbas/2011/December-2011/2621-2624.pdf
53. Carvalho I.S.d., Miranda I., Pereira H. Evaluation of oil composition of some crops suitable for human nutrition. Indust. Crops Prod. 2006; 24(1):75-8. https://www.sciencedirect.com/science/article/abs/pii/S0926669006000380
54. Johnston A.M., Tanaka D.L., Miller P.R., Brandt S.A., Nielsen D.C., Lafond G.P., Riveland N.R. Oilseed crops for semiarid cropping systems in the northern Great Plains. Agron. J. 2002; 94(2):231-40. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2002.2310
55. Kar G., Kumar A., Martha M. Water use efficiency and crop coefficients of dry season oilseed crops. Agric. Water Manage. 2007; 87(1):73-82. https://www.sciencedirect.com/science/article/abs/pii/S0378377406001739
56. Nabipour M., Meskarbashee M., Yousefpour H. The effect of water deficit on yield and yield components of safflower (Carthamus tinctorius L.). Pakis. J. Biolog. Sci. 2007; 10(3):421-6. https://pubmed.ncbi.nlm.nih.gov/19069512/
57. Yau S. Safflower agronomic characters, yield and economic revenue in comparison with other rain-fed crops in a high-elevation, semi-arid Mediterranean environment. Exp. Agric. 2004; 40(04):453-62. https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/safflower-agronomic-characters-yield-and-economic-revenue-in-comparison-with-other-rainfed-crops-in-a-highelevation-semiarid-mediterranean-environment/9BD00FFF13BABAB0690720B4670169EA
58. Bassiri A., Khosh-Khui M., Rouhani I. The influences of simulated moisture stress conditions and osmotic substrates on germination and growth of cultivated and wild safflowers. J. Agri. Sci. 1977; 88(1):95-100. https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/influences-of-simulated-moisture-stress-conditions-and-osmotic-substrates-on-germination-and-growth-of-cultivated-and-wild-safflowers/EA4266D569ECA4F27FEC2DB03ADA7576
59. Mogal S., Khiratkar S., Chopde N., Dalvi A., Kuchanwar O., Khobragade Y. Effect of organic manures and biofertilizers with reduced doses of nitrogen on growth, yield and quality of China aster. J. Soils Crops. 2006; 16(1):180-5. https://www.cabdirect.org/cabdirect/abstract/20063145490
60. Naik R., Halepyati A., Pujari B. Effect of organic manures and fertilizer levels on growth, yield components and yield of safflower (Carthamus tinctorius L.). Karnataka J. Agri. Sci. 2010; 20(4). https://www.researchtrend.net/bfij/pdf/BFIJ%2027%20MOHSEN%20EDALAT%201215%20Effect%20of%20Organic%20and%20Mineral%20Fertilizer%20on%20Safflower%20(Carthamus%20tinctorius)%20Seed%20Yield%20and%20Yield%20Components.pdf
61. Terzi R., Kadioglu A. Drought stress tolerance and the antioxidant enzyme system. Acta Biol. Cracov. Seri. Botani. 2006; 48:89-96. https://abcbot.pl/pdf/48_2/89-96.pdf
62. Roland S., Laima S. Phenolics and cold tolerance of Brassica napus. Plant Agri. 1999; 1:1-5. http://www.regional.org.au/au/gcirc/4/421.htm
63. Canellas L.P., Olivares F.L., Okorokova-Façanha A.L., Façanha A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002; 130(4):1951-7. https://academic.oup.com/plphys/article/130/4/1951/6110575
64. Harris G.D., Platt W.L., Price B.C. Vermicomposting in a rural community. Biocycle. 1990; 31(1):48-51. https://p2infohouse.org/ref/33/32521.pdf
65. Pascual J., Garcia C., Hernandez T., Ayuso M. Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol. Fertility Soils. 1997; 24(4):429-34. https://link.springer.com/article/10.1007/s003740050268
66. Patriquin D.G., Baines D., Abboud A. Diseases, pests and soil fertility. In: Cook H.F., Lee H.C., editors. Soil Management in Sustainable Agriculture. Wye, England: Wye College Press; 1995. p. 161-74.
67. Gutiérrez-Miceli F., Moguel-Zamudio B., Abud-Archila M., Gutiérrez-Oliva V., Dendooven L. Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation. Bioresour. Technol. 2008; 99(15):7020-6. https://www.sciencedirect.com/science/article/abs/pii/S0960852408000229
68. Chaoui H.I., Zibilske L.M., Ohno T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 2003; 35(2):295-302. https://www.sciencedirect.com/science/article/abs/pii/S0038071702002791
69. Orozco F., Cegarra J., Trujillo L., Roig A. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol. Fertility Soils. 1996; 22(1-2):162-6. https://srv2.freepaper.me/n/MV9aJF8e-M8o-BmrmEBeTg/PDF/34/342606556c93e1f310e8d7f08ebb7377.pdf
70. Frankenberger W.T.J., Arshad M. Phytohormones in soils: microbial production and function. New York: Marcel Dekker 1995. 503 p.
71. Makkar C., Singh J., Parkash C., Singh S., Vig A.P., Dhaliwal S.S. Vermicompost acts as bio-modulator for plants under stress and non-stress conditions. Environ. Dev. Sustainability. 2023; 25(3):2006-57. https://doi.org/10.1007/s10668-022-02132-w
72. Atiyeh R., Subler S., Edwards C., Bachman G., Metzger J., Shuster W. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia. 2000; 44(5):579-90. https://www.sciencedirect.com/science/article/abs/pii/S0031405604700736
73. Taleshi K., Shokoh-Far A., Rafiee M., Noormahamadi G., Sakinejhad T. Effect of vermicompost and nitrogen levels on yield and yield component of safflower (Carthamus tinctorius L.) under late season drought stress. Inter. J. Agro. Plant Product. 2011; 2(1):15-22. https://www.semanticscholar.org/paper/Effect-Of-Vermicompost-And-Nitrogen-Levels-On-Yield-Shokohfar-Noormahamadi/e2c0d16cbe90b07751d38788302b3f39a0daf2e7
74. Reddy M.V., Ohkura K. Vermicomposting of rice-straw and its effects on sorghum growth. Trop. Ecol. 2004; 45(2):327-32. https://www.semanticscholar.org/paper/Vermicomposting-of-rice-straw-and-its-effects-on-Reddy-Ohkura/4aa0c512116638591e59c22add8b3e6808817bc6
75. Bayraktar N., Ulker M. Traits affect the yield and yield components of four safflower cultivar candidates. Ankara University Faculty of Agriculture, Annual. 1990; 41:1-2.
76. Das N., Ghosh N., editors. Effect of number of tillage and N-levels on yield of Rain fed safflower after transplanted Wet Rice. Proceedings of 3rd International safflower Conference; 1993 14-18th June; Beijing, China
77. Luo L., Zhang Y., Xu G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020; 71(15):4415-27. https://doi.org/10.1093/jxb/eraa187
78. Edwards C.A., Arancon N.Q., Vasko-Bennett M., Askar A., Keeney G. Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymna vittatum)(Fabr.) on cucumbers and tobacco hornworm (Manduca sexta)(L.) on tomatoes. Pedobiologia. 2010; 53(2):141-8. https://www.sciencedirect.com/science/article/abs/pii/S0031405609000766
79. Edwards C.A., Arancon N.Q., Vasko-Bennett M., Askar A., Keeney G., Little B. Suppression of green peach aphid (Myzus persicae)(Sulz.), citrus mealybug (Planococcus citri)(Risso), and two spotted spider mite (Tetranychus urticae)(Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Protect. 2010; 29(1):80-93. https://www.sciencedirect.com/science/article/abs/pii/S0261219409002038
80. Theunissen J., Ndakidemi P., Laubscher C. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Inter. J.Physic. Sci. 2010; 5(13):1964-73. https://academicjournals.org/article/article1380817511_Theunissen%20et%20al.pdf
81. Schädler M., Brandl R., Kempel A. Host plant genotype determines bottom‐up effects in an aphid‐parasitoid‐predator system. Entomol. Exp. Appl. 2010; 135(2):162-9. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1570-7458.2010.00976.x
82. Lazcano C., Domínguez J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In: Miransari M., editor. Soil Nutrients: Nova Science Publishers, Inc. ; 2011. p. 1-23.