Effects of Phenological Stages and Ecological Factors on Secondary Metabolites of Clematis ispahanica Boiss

Document Type : Original Research

Authors
1 Rangeland Management Department- Rangeland and Watershed Management Faculty - Gorgan University of Agricultural sciences and Natural Resources, Gorgan, Iran
2 Dept. of Rangeland Management, Faculty of Rangeland and Watershed Management,Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
3 Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
4 Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj, Iran
Abstract
Aims: This research aimed to evaluate some phytochemical characteristics of Clematis ispahanica Boiss. in two arid and semi-arid sites.

Materials & Methods: After studying the climatic conditions in each site, 30plots (6m2) were established randomly– systematically for soil and plant sampling. A total of ten composite soil samples were collected from two depths (0–10 and 10-30 cm), and some of their properties were measured. Three plant samples were obtained and mixed at three Phenological stages in each site, and their secondary metabolites were determined. A comparison of soil properties between the two sites was performed using an independent-sample t-test. Phytochemical comparison of plants between two sites and three Phenological stages was performed using Factorial analysis of variance and Duncan’s multiple range test. Correlation between soil properties and phytochemical characteristics was performed using the Pearson correlation coefficient.

Findings: The results demonstrated that C. ispahanica has higher secondary metabolites (total Phenol, total Flavonoid, and total Alkaloids) in semi–arid climates compared to arid climates. In both sites, the highest content of secondary metabolites was observed at the flowering stage (Phenolic content in Bavanat and Mehriz city’s 184.33 & 115.16 mg GAE.g. DW Ext, Flavonoid content, 32.57 & 28.37 mg QE.g DW Ext, Alkaloids content 12.89 & 5.75 mg Atr.g DW Ext, respectively). A significant, mostly positive, correlation was observed between the phytochemical characteristics of C. ispahanica and soil pH, EC, and total Nitrogen.

Conclusion: It was concluded that heavier soil texture, semi-arid climate, and flowering stage are more suitable for C. ispahanica secondary metabolites production.


Keywords

Subjects


1- Dixon R.A. Natural products and plant disease resistance. Nature. 2001; 411: 843-847. https://pubmed.ncbi.nlm.nih.gov/11459067/
2- Oksman-Caldentey K.M., Inzé D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci. 2004; 9: 433-40. https://pubmed.ncbi.nlm.nih.gov/15337493/
3- Bourgaud F., Gravot A., Milesi S., Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci.. 2001; 161: 839–851. https://www.sciencedirect.com/science/article/abs/pii/S0168945201004903
4- Yang L., Wen K., Ruan X., Zhao Y., Wei F., Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. MOLECULES. 2018; 23: 1-26. https://pubmed.ncbi.nlm.nih.gov/29584636/
5- Kakaraparthi P.S., Srinivas K., Kumar J.K., Kumar A.N., Rajput D. K., Anubala, S. Changes in the essential oil content and composition of palmarosa (Cymbopogon martini) harvested at different stages and short intervals in two different seasons.IND.CROP.PROD. 2015; 69: 348-354. https://www.sciencedirect.com/science/article/abs/pii/S0926669015001156
6- Djouahri A., Boualem S., Boudarene L., Baaliouamer A. Geographic's variation impact on chemical composition, antioxidant and anti-inflammatory activities of essential oils from wood and leaves of Tetraclinis articulata (Vahl) Masters.IND.CROP.PROD. 2015; 63: 138-146. https://www.sciencedirect.com/science/article/abs/pii/S0926669014006244
7- Yesil-Celiktas O., Girgin G., Orhan H., Wichers H., Bedir E., Vardar-Sukan F. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times. Eur. Food Res. Technol. 2007; 224: 443-451. https://www.wur.nl/de/Publicatie-details.htm?publicationId=publication-way-333533383136
8- Okoh O., Sadimenko A., Afolayan A. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydro distillation and solvent free microwave extraction methods. Food Chem. 2010; 120: 308-312. https://www.semanticscholar.org/paper/Comparative-evaluation-of-the-antibacterial-of-the-Okoh-Sadimenko/effbfc5e3beecfad25629747f0bc595052c6f638
9- Ruberto G., Baratta M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000; 272, 167-174. https://scirp.org/reference/referencespapers.aspx?referenceid=1140092
10- Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007; 22: 569-574. https://pubmed.ncbi.nlm.nih.gov/17988759/
11- Hoch G., Körner C. The carbon charging of pines at the climatic treeline: a global comparison. OECOLOGIA. 2003; 135:10-21. https://www.jstor.org/stable/4223552
12- Reisch C., Anke A., Röhl M. Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl. Ecol. 2005; 26: 35-45. https://www.sciencedirect.com/science/article/abs/pii/S1439179104000659
13- Saberi M., Niknahad-Gharmakher H., Heshmati Gh., Barani H., Shahriari A. Effects of Different Drought and Salinity Levels on Seed Germination of Citrullus coloicynthis. ECOPERSIA. 2017; 5(3): 1903-1917. https://ecopersia.modares.ac.ir/article-24-11809-en.html
14- Noguchi N., Niki E. Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radical Bio. Med. 2000; 28: 1538-1546. https://www.sciencedirect.com/science/article/abs/pii/S0891584900002562
15- Wang Ya., Guo T., Yin L.J., Shang Zhen Z., Zhao P. Four flavonoid glycosides from the pulps of Eleagnus angustifolia and their antioxidant activities. Adv. Mat. Res. 2012; 756: 16-20. https://www.scientific.net/AMR.756-759.16
16- Zaveri N.T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. J. Life Sci.R.Duble.S. 2006; 78: 2073-2080. https://pubmed.ncbi.nlm.nih.gov/16445946/
17- Ajanal M., Gundkalle M.B., Nayak Sh.U. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc. Sci. Life. 2012; 124: 198–201. https://pubmed.ncbi.nlm.nih.gov/23661869/
18- Ahuja I., De Vos R. C., Bones A. M., Hall R.D. Plant molecular stress responses face climate change. Trends Plant Sci. 2010; 15: 664–674. https://pubmed.ncbi.nlm.nih.gov/20846898/
19- Gairola S., Shariff N., Bhate A., Prakash kola C. Influence of climate change on production of secondary chemicals in high altitude medicinal plants. J. Med. Plant Res. 2010; 1825- 1829. https://www.semanticscholar.org/paper/Influence-of-climate-change-on-production-of-in-Gairola-Shariff/b6c62bf509b1e7cad301dca51e172ad2bfc0eff1
20- Oloumi H., Hassibi N. Study the correlation between some climate parameters and the content of phenolic compounds in roots of Glycyrrhiza glabra. J. Med. Plant Res. 2010; 5: 6011-6016. https://www.scinapse.io/papers/2170231558
21- Kleinwächter M., Selmar D. Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforsch. Völk. 2008; 58:139-144. https://hal.archives-ouvertes.fr/hal-01284276/document
22- Rojas G., Levaro J., Tortoriello J., Navarro V. Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory disease. J. Ethnopharmacol. 2001; 74:97-101. https://pubmed.ncbi.nlm.nih.gov/11137354/
23- Ashrafzadeh M., Niknahad Gharmakher H., Heshmati Gh.A., Saharkhiz M.J., Ghorbani-Nohoji M. Ecological characteristics and forage quality of Clematis ispahanica in Fars and Yazd Provinces. Iranian Journal of Range and Desert Research. 2020; 26(2): 432-446. https://ijrdr.areeo.ac.ir/article_119364.html?lang=en
24- Karimi E., Ghorbani-Nohooji M., Habibi M., Ebrahimi M., Mehrafarin A., Khalighi-Sigaroodi F. Antioxidant potential assessment of phenolic and flavonoid rich fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Nat. Prod. Res. 2018; 32: 1991-1995. https://pubmed.ncbi.nlm.nih.gov/28774179/
25- Ehsani S.M. Effect of Wheat Straw Biochar and Lignite on Soil Biological Properties, Quality and Quantity of Forage for Nitraria schoberi and Astragalus podolobus Species. Ph.D. Thesis, Gorgan University of Agricultural Sciences and Natural Resources, Iran. 2020; 124. https://ganj.irandoc.ac.ir/viewer/885f787433f6847cd31beabed80cb4aa?sample=1
26- Ordonz A., Gomez j., Vattuone M., Lsla M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006; 97: 452–458. https://europepmc.org/article/AGR/IND43792249
27- Sarker S.D., Latif Z., Gray A.I. Natural products isolation 2006; 2nd Edition. Humana Press Inc., New Jersey, U.S.A., 515p. https://www.amazon.com/Natural-Products-Isolation-Methods-Biotechnology/dp/1617375756
28- Zaree R., Farhadi M., Mohamadzadeh Z., Goudarzi G.R. Extraction and comparison of alkaloids in different organs during different phonological periods of Nitraria schoberi. Ann. Biol. Res. 2013; 4:130-135 https://www.cabdirect.org/cabdirect/abstract/20133095293
29- Tiwari R.K., Udayabanu M., Chanda S. Quantitative Analaysis of Secondary Metabolism in Aqueous Extract of Clerodendrum serrutum. Int. Res. J. Pharm. 2016; 7: 61-65. https://www.semanticscholar.org/paper/QUANTITATIVE-ANALYSIS-OF-SECONDARY-METABOLITES-IN-Tiwari-Udayabanu/fd2652098695f3879d6de9b170de2679d0df9b97
30- Conforti F., Statti G.A., Menichini F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturitystage. Food Chem. 2007; 102: 1096–1104. https://www.sciencedirect.com/science/article/abs/pii/S0308814606005371
31- Pastirova A., Repack M., Eliasora A. Salicylic acid induces change coumarin metabolites in Matricaria chamomilla L. Plant Sci. 2004; 167: 819-824. https://www.sciencedirect.com/science/article/abs/pii/S0168945204002432
32- Tundis R., Nadjafi F., Menichini F. Angiotensin- converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad. Phytother Res. 2013; 27: 572-580. https://pubmed.ncbi.nlm.nih.gov/22693035/
33- Akula R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011; 6:1720- 1731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329344/
34- Ozkur O., Ozdemir F., Bor M., Turkan I. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata to drought. Environ. Exp. Bot. 2009; 66: 487-492. https://www.sciencedirect.com/science/article/abs/pii/S009884720900080X
35- Rezazadeh A., Ghasemnezhad A., Barani M., Telmadarrehei T. Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Med. Plant Res. 2012; 6: 245-252. https://scialert.net/fulltext/?doi=rjmp.2012.245.252
36- Hatamnia A.A., Rostamzad A., Malekzadeh P., Darvishzadeh R., Abbaspour N., Hosseini M., Mehr R.S.A. Antioxidant activity of different parts of Pistacia khinjuk Stocks fruit and its correlation to phenolic composition. Nat. Prod. Res. 2016; 30:1445–1450. https://www.sciencedirect.com/org/science/article/abs/pii/S1478641922001115
37- Masto R.E., Chhonkar P.K., Singh D., Patra A.K. Soil quality response to long term nutrient and crop management on a semi-arid Inceptisol. Agric. Ecosyst. Environ. 2007; 118: 130-142. https://www.semanticscholar.org/paper/Soil-quality-response-to-long-term-nutrient-and-on-Masto-Chhonkar/dd47178f2bf5623b5fd639d777abfe5bf38d2625
38- Kaykhah E., Niknahad-Gharmakher H. Impact of an alternative system on some soil properties as compare with forest and cropland systems. J. Soil Water Conserv. 2015; 22: 127-142. https://jwsc.gau.ac.ir/article_2449.html?lang=en
39- Abdolzade A., Hossainian F., Aghdasi M., Sadeghipoor H.R. Effects of Nitrogen Sources and Levels on Growth and Alkaloid Content of Periwinkle. Asian J. Plant Sci. 2006; 18: 271-276. https://agris.fao.org/agris-search/search.do?recordID=DJ2012050283
40- Ehsani S.M., Niknahad-Gharmakher H., Motamedi J., Akbarlou M., Sheidai-Karkaj E. The Impact of Lignite and Wheat Straw Biochar application on Soil Properties and Plant Growth of Pot Grown Astragalus podolobus. ECOPERSIA. 2021; 9(1):61-67. https://ecopersia.modares.ac.ir/article-24-41508-en.html