[1] Licausi F. Van Dongen J.T., Giuntoli B., Novi G., Santaniello A., Geigenberger P., Perata P. HRE1 and HRE2, two hypoxia‐inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant. J. 2010 Apr; 62(2):302-15. https://doi.org/10.1111/j.1365-313X.2010.04149.x
[2] Bailey-Serres J., Voesenek L.A. Flooding stress: acclimations and genetic diversity. ANNU. REV. PLANT. BIOL. 2008 Dec; 59:313-339. http://10.1146/annurev.arplant.59.032607.092752
[3] Liang Z., Yang J., Hu Y., Wang J., Li B., Zhao J. A sample reconstruction method based on a modified reservoir index for flood frequency analysis of non-stationary hydrological series. Stoch. Environ. Res. Risk. Assess. 2018 Jun; 32(6):1561-71. https://doi.org/10.1007/s00477-017-1465-1
[4] Chen H., Qualls R.G., Blank R.R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. AQUAT. BOT. 2005 Aug 1; 82(4):250-68. https://doi.org/10.1016/j.aquabot.2005.02.013
[5] Parad G.A., Kouchaksaraei M.T., Striker G.G., Sadat S.E., Nourmohammadi K. Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress. Scandin. J. Forest. Resear. 2015 Jul 3; 31(5):458-66. https://doi.org/10.1080/02827581.2015.1072240
[6] Gago J., Daloso D.D., Figueroa C.M., Flexas J., Fernie A.R., Nikoloski Z. Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: a multispecies meta-analysis approach. PLANT. PHYSIO. 2016 May; 171(1):265-79. https://doi.org/10.1104/pp.15.01660
[7] Zhang J. Yin D.J., Fan S.X., Li S.G., Dong L. Modulation of morphological and several physiological parameters in sedum under waterlogging and subsequent drainage. Russ. J. Plant. Physiol. 2019 Mar; 66(2):290-8. https://doi.org/10.1134/S1021443719020183
[8] Ponte N.H., Santos R.I., Lopes Filho W.R., Cunha R.L., Magalhães M.M., Pinheiro H.A. Morphological assessments evidence that higher number of pneumatophores improves tolerance to long-term waterlogging in oil palm (Elaeis guineensis) seedlings. Flora. 2019 Jan 1; 250: 52-8. https://doi.org/10.1016/j.flora.2018.11.017
[9] Junglos F.S., Junglos M.S., Dresch D.M., Bento L.F., Santiago E.F., Mussury R.M., Scalon S.D. Morpho-physiological responses of Ormosia arborea (Fabaceae) seedlings under flooding and post-flooding conditions. AUST. J. BOT. 2019 Oct 8; 66(7):489-99. https://doi.org/10.1071/BT17206
[10] Sadati S.E., Tabari M.O., Assareh M.H., Sharifabad H.H., Fayaz P. Response of Populus caspica Bornm. Seedlings to flooding. Iran. J. Forest. Poplar. Resear. 2009; 19(3):340-55. https://doi.org/10.22092/ijfpr.2011.107545
[11] Nourmohammadi K., Kartoolinejad D., Naghdi R., Baskin C.C. Effects of dormancy-breaking methods on germination of the water-impermeable seeds of Gleditsia caspica (Fabaceae) and seedling growth. Folia. Oecolo. 2019; 46(2):115-26. http:// doi: 10.2478/foecol-2019-0014
[12] Miyase T., Melek F.R., Warashina T., Selim M.A., El Fiki N.M., Kassem I.A. Cytotoxic triterpenoid saponins acylated with monoterpenic acids from fruits of Gleditsia caspica Desf. Phytochemi. 2010 Nov 1; 71(16):1908-16. https://doi.org/10.1016/j.phytochem.2010.08.001
[13] Puryafar P., Khaleghi A., Abbasifar A., Taghizadeh M. Effect of root inoculation of mycorrhiza fungi (Glomus mosseae) on growth and resistance to drought stress in Gleditsia caspica seedlings. Iran. J. Horticul. Science. 2014; 52(3): 633-645. https://doi.org/10.22059/ijhs.2021.296302.1763
[14] Mosleh Arany., A., Rafiei A., Tabande A., Azimzadeh H. R. Morphological and physiological responses of root and leave in Gleditschia caspica to salinity stress. Iran. J. Plant. Biol, 2018; 9(4): 1-12. https://doi.org/10.22108/ijpb.2017.94779.0
[15] Puryafar P., Khaleghi., A., Abbasifar A., Taghizadeh M. Inoculation of Gleditsia caspica seeds with arbuscular mycorrhiza to increase drought tolerance of saplings. J. Plant. Produc. Resear. 2021; 28(2): 101-114. https://doi.org/10.22069/jopp.2020.17884.2659
[16]Rezaei Karmozdi M., Tabari Kouchaksaraei M., Sadati S.E. Effect of Biochar on Physiological Characteristics of European Yew (Taxus baccata) Seedling in Different Light Intensities. ECOPERSIA. 2022 Dec 10; 10(1):61-9. https://doi.org/ 20.1001.1.23222700.2022.10.1.5.8.
[17] Ghanbary E., Fathizadeh O., Pazhouhan I., Zarafshar M., Tabari M., Jafarnia S., Parad G.A., Bader M.K. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two Middle Eastern oak species. Forests. 2021 Feb 21;12(2):247. https://doi.org/10.3390/f12020247
[18] Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. MEETING. 1983; 591-592. https://doi.org/10.1042/bst0110591
[19] Zhao H., Guan J., Liang Q., Zhang X., Hu H., Zhang J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scient. Reports. 2021 May 10; 11(1):1. https://doi.org/10.1038/s41598-021-89322-0
[20] Karimi A., Tabari Kouchaksaraei M., Neirynck J. Drought stress tolerance in seedlings of four deciduous species, common in nurseries of semi-arid region of Iran. Ecopersia. 2022 Mar 10; 10(2):165-72. http://ecopersia.modares.ac.ir/article-24-58450-en.html
[21] Maxwell A., Capon S.J., James C.S. Effects of flooding on seedling establishment in two Australian riparian trees with contrasting distributions; Acacia stenophylla A. Cunn. Ex Benth. And Casuarina cunninghamiana Miq. Ecohydro. 2016 Sep; 9(6):942-9. https://doi.org/10.1002/eco.1691
[22] Mommer L., Lenssen J.P., Huber H., Visser E.J., De Kroon H. Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J. Eco. 2006 Nov; 94(6):1117-29. . https://doi.org/10.1111/j.1365-2745.2006.01175.x
[23] Ghazavi R., Moafi Rabori A., Ahadnejad Reveshty M. Effects of rainfall intensity-duration-frequency curves reformation on urban flood characteristics in semiarid environment. ECOPERSIA. 2017 Jun 10; 5(2):1799-813. https://doi.org/ 20.1001.1.23222700.2017.5.2.3.3.
[24] Kianmehr A., Ghanbary E., Parad Gh.A., Tabari M., Boor Z. Variations of Macro and Micro Nutrient Concentration in Soil and Leaf of Alnus subcordata (L.) Seedlings under Flooding Stress, J. Forest. Resear. Develo. 2022; 7(3): 477-492. Magiran.com/p2372868 https://doi.org/10.30466/jfrd.2021.121105
[25] Glenz C, Schlaepfer R, Iorgulescu I, Kienast F. Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management. 2006 Nov 1; 235(1-3):1-3. https://doi.org/10.1016/j.foreco.2006.05.065
[26] Gomes A.S., Kozlowski T.T. Physiological and growth responses to flooding of seedlings of Hevea brasiliensis. Biotro. 1988 Dec 1:286-93. https://doi.org/10.2307/2388318
[27] Miao L.F., Yang F., Han C.Y., Pu Y.J., Ding Y., Zhang L.J. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides. Scient. Reports. 2017 May 31; 7(1):1-4. https://doi.org/10.1038/s41598-017-02765-2
[28] Xin J, Huang B., Yang Z., Yuan J., Xu Y. Physiological responses of Indigofera spicata to different flooding stress. Acta. Pratacul. Sinica. 2012; 21(3):177-83. https://doi.org/10.3390/stresses2010009
[28] Rosa D.B., Scalon S.D., Cremon T., Dresch D.M. Gas exchanges and antioxidant activity in Copaifera langsdorffii Desf. Seedlings after flooding. American. J. Plant. Scienc. 2018 Apr 19; 9(05):979. http://doi.org/ 10.4236/ajps.2018.95075
[30] Vidal D.B., Andrade I.L., Dalmolin Â., Mielke M. Photosynthesis and growth of copaiba seedlings subjected to soil flooding. Flores. Ambie. 2019 Jan 7; 26. https://doi.org/10.1590/2179-8087.056916
[31] Linné J.A., Jesus M.V., de Lima V.T., Reis L.C., Dresch D.M., de Paula Quintão Scalon S., Santos C.C. Effects of shading on growth and photosynthetic metabolism in Dipteryx alata Vogel seedlings under flooding. Brazil. J. Bot. 2021 Sep; 44(3):629-38. https://doi.org/10.1007/s40415-021-00735-7
[32] Striker G.G. Time is on our side: the importance of considering a recovery period when assessing flooding tolerance in plants. Eco. Resear. 2012 Sep; 27(5):983-7. https://doi.org/10.1007/s11284-012-0978-9
[33] Vu J.C., Yelenosky G. Photosynthetic responses of citrus trees to soil flooding. Physio. Plant. 1991 Jan; 81(1):7-14. https://doi.org/10.1111/j.1399-3054.1991.tb01705.x
[34] Dreyer E. Compared sensitivity of seedlings from 3 woody species (Quercus robur L, Quercus rubra L and Fagus silvatica L) to water-logging and associated root hypoxia: effects on water relations and photosynthesis. In Annales des sciences forestières 1994 (Vol. 51, No. 4, pp. 417-428). EDP Sciences. https://doi.org/10.1051/forest:19940407
[35] Gravatt D.A., Kirby C.J. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree. Physio. 1998 Jun 1; 18(6):411-7. https://doi.org/10.1093/treephys/18.6.411
[36] Du K., Xu .L, Wu H., Tu B., Zheng B. Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. Flora-Morphology, Distribution, Function. Eco. Plants. 2012 Feb 1; 207(2):96-106. https://doi.org/10.1016/j.flora.2011.11.002
[37] Waldhoff D., Furch B., Junk W.J. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Enviro. Experi. Bot. 2002 Dec 1; 48(3):225-35. https://doi.org/10.1016/S0098-8472(02)00037-0
[38] Iwanaga F., Yamamoto F. Growth, morphology and photosynthetic activity in flooded Alnus japonica seedlings. J. forest. Research. 2007 Jun 1; 12(3):243-6. https://doi.org/10.1007/s10310-007-0003-2
[39]Jing Y.X., Li G.L., Gu B.H., Yang D.J., Xiao L., Liu R.X., Peng C.L. Leaf gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia Seedlings to flooding and subsequent recovery. Photosynthetica. 2009 Dec; 47(4):595-601. https://doi.org/10.1007/s11099-009-0085-5
[40]Pezeshki A., Vergote V., Van Dorpe S., Baert B., Burvenich C., Popkov A., De Spiegeleer B. Adsorption of peptides at the sample drying step: influence of solvent evaporation technique, vial material and solution additive. J. pharma. Bio. Analysis. 2009 Apr 5; 49(3):607-12. https://doi.org/10.1016/j.jpba.2008.12.003