Improving Rainfall Maps using Precipitation Products of IMERG V06 Final Satellite and Interpolation Methods

Document Type : Original Research

Authors
1 Ph.D. student, Watershed Management, Faculty of Natural Resources, University of Tehran, Iran.
2 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, University of Tehran, Iran.
3 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, University of Tehran, Iran.
4 Soil Conservation and Watershed Management Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran.
Abstract
Aims: The availability of precipitation data plays an important role in many meteorological, hydrological and applications.

Materials & Methods: In this study, to improve precipitation maps and increase the accuracy of precipitation maps, linear regression, multivariate, and Kriging subsets were used. The data from 14 meteorological stations and IMERG images in the period of 20 years (2001 to 2020), digital elevation model, Latitude and Longitude maps were used. At first, based on regression in Minitab software, the relationship between air and ground parameters was taken. Finally, with the interpolation methods and based on the error coefficients, the best equations for predicting precipitation were determined and the spatial distribution of precipitation was obtained.

Findings: According to the results, six out of 13 models were selected because of low RMSE and high R2, R, and NS. In regression models where only one climatic or edaphic parameter was used, forecast accuracy was reduced. But in the models that were used in the regression elevation, Longitude, Latitude and IMERG parameters in combination with interpolation methods, the extracted data matched the real data with a slight difference. In this study, instead of the average of the input parameters, the maps of each parameter were used, increasing the accuracy of the forecast model to R2=0.8.

Conclusion: results showed that combining satellite precipitation products with interpolation methods led to a more accurate estimate of precipitation in the points without recording data will be precipitated and the multivariate regression method will be more accurate than the linear gradient.
Keywords

Subjects


1- Markonis Y., Papalexiou S.M., Martinkova M., Hanel M. Assessment of water cycle intensification over land using a multisource global gridded precipitation dataset. J. Geophys. Res.: Atmos. 2019; 124(21):11175-11187. https://doi.org/10.1029/2019JD030855.
2- Du Y., Xie Z.Q., Miao Q. Spatial scales of heavy meiyu precipitation events in eastern china and associated atmospheric processes. Geophys. Res. Lett. 2020; 47(11): 1-9. https://doi.org/10.1029/2020GL087086.
3- Breugem A.J., Wesseling J.G., Oostindie K., Ritsema, C.J. Meteorological aspects of heavy precipitation in relation to floods–an overview. Earth-Sci. Rev. 2020; 204, 103171. https://doi.org/10.1016/j.earscirev.2020.103171.
4- Zhong R., Chen X., Lai C., Wang Z., Lian Y., Yu H., Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019; 568, 343–359. https://doi.org/10.1016/j.jhydrol.2018.10.072.
5- Brodeur Z. P. Steinschneider S. Spatial bias in medium-range forecasts of heavy precipitation in the sacramento river basin: implications for water management. J . Hydrometeorology, 2020; 21(7): 1405-1423. https://doi.org/10.1175/JHM-D-19-0226.1.
6-Tesfa T.K., Leung L.R. Ghan S.J. Exploring topography‐based methods for downscaling subgrid precipitation for use in Earth System Models. J. Geophys. Res.: Atmos. 2020; 125(5): 1-24. https://doi.org/10.1029/2019JD031456.
7- Zhang L., Ren D., Nan Z., Wang W., Zhao Y., Zhao Y., Ma Q., Wu X. Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the Qinghai-Tibet Plateau. J. Hydrol. 583, 124629: 1-15. https://doi.org/10.1016/j.jhydrol.2020.124629.
8- Xie P. Xiong A.Y. A conceptual model for constructing high‐resolution gauge‐satellite merged precipitation analyses. J. Geophys. Res.: Atmos. 2011; 116(D21). https://doi.org/10.1029/2011JD016118.
9- Golding B.W. Uncertainty propagation in a London flood simulation. J. Flood. Risk. Manag. 2009; 2(1): 2-15. https://doi.org/10.1111/j.1753-318X.2008.01014.x.
10-Gourley J.J. Vieux B.E. A method for identifying sources of model uncertainty in rainfall-runoff simulations. J. Hydrol. 2006; 327(1-2): 68-80. https://doi.org/10.1016/j.jhydrol.2005.11.036.
11- Sorooshian S., AghaKouchak A., Arkin P., Eylander J., Foufoula-Georgiou E., Harmon R., Hendrickx J.M., Imam B., Kuligowski R., Skahill B. Skofronick-Jackson G. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011; 92(10):1353-1357. https://www.jstor.org/stable/26218594.
12- Zhao H.G., Yang S.T., Wang Z.W., Zhou X., Luo Y., Wu L.N. Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed 42 hydrological model in the Weihe River catchment in China. J. Geogr. Sci. 2015; 25(2): 177-195. https://link.springer.com/article/10.1007/s11442-015-1161-3.
13-Ghaderpour E., Ben Abbes A., Rhif M., Pagiatakis S.D., Farah, I. R. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. Int. J. Remote Sens. 2020; 41(6): 2374-2390. https://doi.org/10.1080/01431161.2019.1688419.
14-Sharifi E., Saghafian B., Steinacker R. Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. J. Geophys. Res.: Atmos. 2019; 124 (2): 789–805. https://doi.org/10.1029/2018JD028795.
15- Beck H.E., Wood E.F., Pan M., Fisher C.K., Miralles D.G., van Dijk A.I.J.M., McVicar T.R., Adler R.F. MSWEP V2 global 3-hourly 0.1◦ precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019; 100 (3): 473–500. https://doi.org/10.1175/BAMS-D-17-0138.1.
16- Baez-Villanueva O.M., Zambrano-Bigiarini M., Beck H.E., McNamara I., Ribbe L., Nauditt A., Birkel C., Verbist K., Giraldo-Osorio J.D., Xuan Thinh N. RFMEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020; 239, 111606: 196-201. https://doi.org/10.1016/j.rse.2019.111606.
17- Hosseini Moghari S.M., Iraqinejad S.H., Ebrahimi K. Evaluation of global rainfall bases and their application in drought monitoring-Case (Karkheh basin). J. Agric. Meteorol. 2016; 102: 2. 14-26. http://www.agrimet.ir/article_54971.html
18-Chen F., Gao Y. Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China. Clim. Dyn. 2018; 51 (9–10): 3311–3331. https://link.springer.com/article/10.1007/s00382-018-4080-z.
19-Gupta V., Jain M.K., Singh P.K., Singh V. An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India. Int. J. Climatol. 2019; 40: 3667–3688. https://doi.org/10.1002/joc.6419.
20-Prakash S., Srinivasan J. A comprehensive evaluation of near-real-time and research products of imerg precipitation over india for the southwest monsoon period. Remote Sens. 2021; 13(18), 3676. 1-19. https://doi.org/10.3390/rs13183676.
21-Hartke S. H., Wright D. B. Where Can IMERG Provide a Better Precipitation Estimate than Interpolated Gauge Data?. Remote Sens. 2022; 14(21): 5563. 1-19. https://doi.org/10.3390/rs14215563.
22-Shen Z., Yong B., Yi L., Wu H., Xu, H. From TRMM to GPM, how do improvements of post/near-real-time satellite precipitation estimates manifest?. Atmos. Res. 2022; 268, 106029. https://doi.org/10.1016/j.atmosres.2022.106029.
23-Bharti V., Singh C. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region. J. Geophys. Res.: Atmos. 2015; 120 (24): 12458–12473. https://doi.org/10.1002/2015JD023779.
24-Ebrahimi S., Chen C., Chen Q., Zhang Y., Ma N., Zaman Q. Effects of temporal scales and space mismatches on the TRMM 3B42 v7 precipitation product in a remote mountainous area. Hydrol. Process. 2017; 31 (24): 4315–4327. https://doi.org/10.1002/hyp.11357.
25-Xu R., Tian F., Yang L., Hu H., Lu H., Hou A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a highdensity rain gauge network. J. Geophys. Res.: Atmos. 2017; 122 (2): 910–924. https://doi.org/10.1002/2016JD025418.
26-Nie S., Luo Y., Wu T., Shi X., Wang Z. A merging scheme for constructing daily precipitation analyses based on objective bias-correction and error estimation techniques. J. Geophys. Res.: Atmos. 2015; 120 (17): 8671–8692. https://doi.org/10.1002/2015JD023347.
27-Yang Z., Hsu K., Sorooshian S., Xu X., Braithwaite D., Zhang Y., Verbist K.M.J. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile. J. Geophys. Res.: Atmos. 2017; 122 (10): 5267–5284. https://doi.org/10.1002/2016JD026177.
28-Baez-Villanueva-test O.M., Zambrano-Bigiarini M., Beck H.E., McNamara I., Ribbe L., Nauditt A., Birkel C., Verbist K., Giraldo-Osorio J.D., Xuan Thinh N. RFMEP: A novel random forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020; 239: 111606. https://doi.org/10.1016/j.rse.2019.111606.
29-Xu L., Chen N., Moradkhani H., Zhang X., Hu C. Improving global monthly and daily precipitation estimation by fusing gauge observations, remote sensing and reanalysis datasets. Water Resour. Res. 2020; 56(3): e2019WR026444. https://doi.org/10.1029/2019WR026444.
30-Shen Y., Xiong A., Hong Y., Yu J., Pan Y., Chen Z., Saharia M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014; 35 (19): 6843. https://doi.org/10.1080/01431161.2014.960612.
31-Mastrantonas N., Bhattacharya B., Shibuo Y., Rasmy M., Espinoza-D´avalos G., Solomatine D. Evaluating the benefits of merging near-real-time satellite precipitation products: a case study in the Kinu Basin Region, Japan. J. Hydrometeorol. 2019; 20 (6): 1213–1233. https://doi.org/10.1175/JHM-D-18-0190.1.
32-Zhang X., Tang Q. Combining satellite precipitation and long-term ground observations for hydrological monitoring in China. J. Geophys. Res.: Atmos. 2015; 120 (13): 6426–6443. https://doi.org/10.1002/2015JD023400.
33-Duan Z., Bastiaanssen W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Rem. Sens. Environ. 2013; 131: 1–13. https://doi.org/10.1016/j.rse.2012.12.002.
34-Bai X., Wu X., Wang P. Blending long-term satellite-based precipitation data with gauge observations for drought monitoring: Considering effects of different gauge densities. J. Hydrol. 2019; 577, 124007. https://doi.org/10.1016/j.jhydrol.2019.124007
35-Li M., Shao Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010; 385 (1–4): 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023.
36-Chao L., Zhang K., Li Z., Zhu Y., Wang J., Yu Z. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. 2018; 558: 275–289. https://doi.org/10.1016/j.jhydrol.2018.01.042.
37-Ma Y., Hong Y., Chen Y., Yang Y., Tang G., Yao Y., Long D., Li C., Han Z., Liu R. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res.: Atmos. 2018; 123 (2): 814–834. https://doi.org/10.1002/2017JD026648.
38-Rahman K.U., Shang S., Shahid M., Wen Y., Khan Z. Application of a dynamic clustered bayesian model averaging (DCBA) algorithm for merging multisatellite precipitation products over Pakistan. J. Hydrometeorol. 2020; 21 (1): 17–37. https://doi.org/10.1175/JHM-D-19-0087.1.
39-Manz B., Buytaert W., Zulkafli Z., Lavado W., Willems B., Robles L.A., Rodríguez- S´anchez J.-P. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. J. Geophys. Res.: Atmos. 2016; 121 (3): 1190–1207. https://doi.org/10.1002/2015JD023788.
40-Chen F., Gao Y., Wang Y., Li X. A downscaling-merging method for highresolution daily precipitation estimation. J. Hydrol. 2020a; 581: 124414. https://doi.org/10.1016/j.jhydrol.2019.124414.
41-Zhang L., Li X., Cao Y., Nan Z., Wang W., Ge Y., Wang P., Yu W. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. J. Hydrol. 2020a; 581, 124456. https://doi.org/10.1016/j.jhydrol.2019.124456.
42-Chen S., Xiong L., Ma Q., Kim J.-S., Chen J., Xu C. Y. Improving daily spatial precipitation estimates by merging gauge observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method. J. Hydrol. 2020b; 589: 125156. https://doi.org/10.1016/j.jhydrol.2020.125156.
43-Nadi M., Jamei M., Bazrafshan J., Janat Rostami S. Evaluation of different methods for interpolation of mean monthly and annual precipitation data (Case Study: Khuzestan Province). Phys. Geol. Res. 2012; 4(44): 130-117. https://doi.org/10.22059/jphgr.2012.30245.
44-Worqlul A.W., Yen H., Collick A.S., Tilahun S.A., Langan S., Steenhuis T.S. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena, 2017; 152: 242-251. https://doi.org/10.1016/j.catena.2017.01.019.
45-Poméon T., Jackisch D., Diekkrüger B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol. 2017; 547:222-235. https://doi.org/10.1016/j.jhydrol.2017.01.055.
46-Kumari M., Basistha A., Bakimchandra O., Singh C.K. Comparison of spatial interpolation methods for mapping rainfall in Indian Himalayas of Uttarakhand region. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment 2016; 159-168. https://link.springer.com/chapter/10.1007/978-3-319-18663-4_27.
47-Arowolo A.O., Bhowmik A.K., Qi W., Deng X. Comparison of spatial interpolation techniques to generate high‐resolution climate surfaces for Nigeria. Int. J. Climatol., 2017; 37: 179-192. https://doi.org/10.1002/joc.4990.
48-Zohrevandi A. A., Sagheb Talebi K. Distribution pattern of Wild pear (Pyrus spp.) in the forests of Kermanshah province of Iran. Appl. Biol. 2021; 33(4): 165-178. https://journals.areeo.ac.ir/article_117768.html
49-Shahbazi Kh., Khosroshahi M., Heshmati M., Saieedifar Z. Effects of climate change on dust storm occurrence in Kermanshah Province, Iran. ECOPERSIA, 2022; 10(2): 121-131. http://ecopersia.modares.ac.ir/article-24-60312-en.html.
50-Zolfaghari H., Sahrai J., Sahaghobadi F., Jalilian A. Analysis on synoptic and dynamic aspects of air pollution in Kermanshah city. J. Geo & Environ. Hazards. 2014; 3(1):75-96. https://geoeh.um.ac.ir/article_27154.html?lang=en.
51-Ghorbanian A., Mohammadzadeh A., Jamali S., Duan Z. Performance evaluation of six gridded precipitation products throughout iran using ground observations over the last two decades (2000–2020). Remote Sens. 2022; 14(15): 3783. https://doi.org/10.3390/rs14153783.
52-Huffman G. J., Bolvin D. T., Braithwaite D., Hsu K., Joyce R., Xie P., Yoo S. H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version, 2015; 4(26). https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.
53-Tan J., Huffman G.J., Bolvin D.T., Nelkin E.J. IMERG V06: Changes to the morphing algorithm. J. Atmos. Ocean. Technol. 2019; 36: 2471–2482. https://doi.org/10.1175/JTECH-D-19-0114.1.
54-Koster R. D., Liu Q., Reichle R. H., Huffman G. J. Improved estimates of pentad precipitation through the merging of independent precipitation data sets. Water Resour. Res. 2021; 57(12): e2021WR030330. https://doi.org/10.1029/2021WR030330.
55-Ali G., Sajjad M., Kanwal S., Xiao T., Khalid S., Shoaib F., Gul H.N. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 2021; 11(1):1-15. https://www.nature.com/articles/s41598-021-86412-x.
56-Zhang G., Tian G., Cai D., Bai R., Tong J. Merging radar and rain gauge data by using spatial–temporal local weighted linear regression kriging for quantitative precipitation estimation. J. Hydrol, 2021; 601, 126612. https://doi.org/10.1016/j.jhydrol.2021.126612.
57-Martínez-González A., Monzó-Cabrera J., Martínez-Sáez A.J., Lozano-Guerrero A.J. Minimization of measuring points for the electric field exposure map generation in indoor environments by means of Kriging interpolation and selective sampling. Environ. Res. 2022; 113577. https://doi.org/10.1016/j.envres.2022.113577.
58-Oliver M.A., Webster R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 2014;113: 56-69. https://doi.org/10.1016/j.catena.2013.09.006.
59-Kambhammettu B.V.N.P., Allena P., King J.P. Application and evaluation of universal kriging for optimal contouring of groundwater levels. J. Earth Syst. Sci. 2011; 120(3): 413-422. https://link.springer.com/article/10.1007/s12040-011-0075-4.
60-Govaerts Y. M., Verstraete M. M. Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Transactions on geoscience and remote sensing, 1998; 36(2): 493-505. https://doi.org/10.1109/36.662732.
61-Milewski A., Elkadiri R., Durham M. Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco. Remote Sens. 2015; 7(5): 5697-5717. https://doi.org/10.3390/rs70505697.
62-Duan Z., Bastiaanssen W. G. M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013; 134: 403-416. https://doi.org/10.1016/j.rse.2013.03.010.
63-Darand M., Amanollahi J., Zandkarimi S. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmos. Res. 2017; 190:121-127.
64-Pirmoradian R., Hashemi H., Fayne J. Performance evaluation of IMERG and TMPA daily precipitation products over CONUS (2000–2019). Atmos. Res. 2022; 279: 106389. https://doi.org/10.1016/j.atmosres.2022.106389.
64-Haberlandt U. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol. 2007; 332 (1-2):144–157. https://doi.org/10.1016/j.jhydrol.2006.06.028.
66-Verworn A., Haberlandt U. Spatial interpolation of hourly rainfall–effect of additional information, variogram inference and storm properties. Hydrol. Earth Syst. Sci. 2011; 15(2): 569-584. https://hess.copernicus.org/articles/15/569/2011/.
67-Berndt C., Haberlandt U. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density. J. Hydro: Regional Studies, 2018; 15:184-202. https://doi.org/10.1016/j.ejrh.2018.02.002.
68-Zou W.Y., Yin S.Q., Wang W.T. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. J. 2021; 598:126273. https://doi.org/10.1016/j.jhydrol.2021.126273.
69-Wang Z., Zhong R., Lai C. Evaluation and hydrologic validation of TMPA satellite precipitation product downstream of the Pearl River Basin, China. Hydrol. Processes. 2017a; 31 (23): 4169–4182. https://doi.org/10.1002/hyp.11350. https://doi.org/10.1002/hyp.11350.
70-Wang Z., Zhong R., Lai C., Chen J. Evaluation of the GPM IMERG satellite base precipitation products and the hydrological utility. Atmos. Res. 2017b; 196: 151–163. https://doi.org/10.1016/j.atmosres.2017.06.020.
71-Alsafadi K., Mohammed S., Mokhtar A., Sharaf M., He H. Fine-resolution precipitation mapping over Syria using local regression and spatial interpolation. Atmos. Res. 2021; 256:105524. https://doi.org/10.1016/j.atmosres.2021.105524.
72-Zandi O., Zahraie B., Nasseri M., Behrangi A. Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area. Atmos. Res. 2022; 272: 106159. https://doi.org/10.1016/j.atmosres.2022.106159.
73-Daly C., Slater M.E., Roberti J.A., Laseter S.H., Swift Jr L.W. High‐resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. Int. J. Climatol. 2017; 37:124-137. https://doi.org/10.1002/joc.4986.
74-Ranhao S., Baiping Z., Jing T. A multivariate regression model for predicting precipitation in the Daqing Mountains. Mountain Res. Develop. 2008; 28(3): 318-325. https://doi.org/10.1659/mrd.0944.