An overview of methods and materials for sandy soil stabilization: emerging advances and current applications

Document Type : Systematic Review

Authors
Research laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology, Narmak 1684613114, Tehran, Iran
Abstract
Aims: Nowadays, the depletion of renewable resources and production particulate matter brought on by desertification and the subsequent dust storms pose a serious and immediate threat to human health. The purpose of this study is to investigate the stabilization methods applicable for desert dust as well as sandy soils to prevent desertification and dust-related negative consequences.

Materials & Methods: The methodology used in this research is a complete review of the provided sources and evaluation of their results in the last two decades in this field. This review deeply investigates the methods and Materials of stabilization of desert sandy soil.

Findings: Chemical stabilizers of loose sand, including cement, lime, nanoclay, blast furnace slag, polymer, fly ash, and other stabilizers, have been used in different countries of the world and have shown acceptable results. The results of the studies show that by using these methods and stabilizing materials, wind erosion can be reduced by 70% and the compressive strength of the soil can be increased by up to 2 times its initial value.

Conclusion: We draw the conclusion that we will require a green and reasonably priced stabilizer to stabilize the desert dust based on the study we have done and the analysis of the papers that have been presented in this sector. Given the limitations and drawbacks of the aforementioned stabilizers, a good stabilizer doesn't destroy the soil's vegetation, doesn't significantly alter the soil's color, texture, or chemical composition, and doesn't interfere with the roots' ability to breathe.
Keywords

Subjects


1. Huang J., Zhang G., Zhang Y., Guan X., Wei Y., Guo R. Global desertification vulnerability to climate change and human activities. L. Degrad. Dev. 2020; 31(11): 1380–1391. https://doi.org/10.1002/ldr.3556
2. Sekhavati B., Sekhavati N. Effects of Climate Change on Dust Storm Occurrence in Kermanshah Province , Iran. ECOPERSIA 2022; 10(2): 121–131. 20.1001.1.23222700.2022.10.2.7.2
3. Samadi-Khangah, Ghorbani, Choukali, Moameri B and MJ. Effect of Grazing Exclosure on Vegetation Characteristics and Soil Properties in the Mahabad Sabzepoush Rangelands , Iran. ECOPERSIA 2021; 9(2): 139–152. 20.1001.1.23222700.2021.9.2.7.5
4. Sadeghi SHR. A Semi-Detailed Technique for Soil Erosion Mapping Based on BLM and Satellite Image Applications. J. Agric. Sci. Technol. 2005; 7(3&4): 133–142.
5. Pooneh M 2005., S M. The National Action Programme to Combat Desertification and Mitigate The Effects of Drought. 2004.
6. Katra I. Soil erosion: Dust control and sand stabilization. Appl. Sci. 2020; 10(22): 1–3. https://doi.org/10.3390/app10228044
7. Rashki A., Middleton NJ., Goudie AS. Dust storms in Iran – Distribution, causes, frequencies and impacts. Aeolian Res. 2021; 48: 100655. https://doi.org/10.1016/j.aeolia.2020.100655
8. Soleimani Z., Teymouri P., Darvishi Boloorani A., Mesdaghinia A., Middleton N., Griffin DW. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020; 223: 117187. https://doi.org/10.1016/j.atmosenv.2019.117187
9. Weixiao Chen., Huan Meng ., Hongquan Song., Hui Zheng. Progress in Dust Modelling, Global Dust Budgets, and Soil Organic Carbon Dynamics. Land 2022; 11: 176. https://doi.org/10.3390/land11020176
10. Sekhavati B., Sekhavati N. Chemical , Physical and Mineralogical Properties of Dust Fractions in the Kermanshah Province , Iran. ECOPERSIA 2020; 8(4): 261–268. 20.1001.1.23222700.2020.8.4.2.7
11. Nwilo PC., Olayinka DN., Okolie CJ., Emmanuel EI., Orji MJ., Daramola OE. Impacts of land cover changes on desertification in northern Nigeria and implications on the Lake Chad Basin. J. Arid Environ. 2020; 181: 104190. https://doi.org/10.1016/j.jaridenv.2020.104190
12. Feng X., Qu J., Tan L., Fan Q., Niu Q. Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau. J. Soils Sediments 2020; 20(1): 472–485. https://doi.org/10.1007/s11368-019-02392-6
13. Chang I., Prasidhi AK., Im J., Shin HD., Cho GC. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 2015; 253–254: 39–47. https://doi.org/10.1016/j.geoderma.2015.04.006
14. Akhir MAM., Mustapha M. Formulation of Biodegradable Plastic Mulch Film for Agriculture Crop Protection: A Review. Polym. Rev. 2022; 0(0): 1–29. https://doi.org/10.1080/15583724.2022.2041031
15. Khan SZ., Rehman Z ur., Khan AH., Qamar S., Haider F. Effect of Polypropylene Fibers and Cement on the Strength Improvement of Subgrade Lying on Expansive Soil. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022; 46(1): 343–352. https://doi.org/10.1007/s40996-021-00790-w
16. Amjadi M., Emami H., Farahani E., Gholoubi A. Effect of Vermicompost and Urban Waste Compost on Stability of Soil Aggregates by High Energy Moisture Characteristic Curve. J. Agric. Sci. Technol. 2021; 23(6). http://jast.modares.ac.ir/article-23-44621-en.html. 20.1001.1.16807073.2021.23.6.10.3
17. Seunghwan Seo., Minhyeong Lee., Jooyoung Im., Yeong-Man Kwon., Moon-Kyung Chung., Gye-Chun Cho., Ilhan Chang. Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification. Constr. Build. Mater. 2021; 307: 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983
18. Doaa Ahmed El-Nagar., Dalal Hereimas Sary. Synthesis and characterization of nano bentonite and its effect on some properties of sandy soils. Soil. Tillage. Res. 2021; 208: 104872. https://doi.org/10.1016/j.still.2020.104872
19. Haofeng X., Feng X., Feng Z. Improvement for the strength of salt-rich soft soil reinforced by cement. Mar. Georesources. Geotechnol. 2018; 36(1): 38–42. https://doi.org/10.1080/1064119X.2016.1278064
20. Yu Z., Xu G., Kang X., Liu Y., Zhang F., Zhan X. Unconfined compressive strength of sulphate saline soil with different salt content and lime proportion. Electron. J. Geotech. Eng. 2016; 21: 10203–10214.
21. Han P., Ren C., Bai X., Chen YF. Corrosion mechanisms for cemented soils in three different sulfate solutions. Acta Geotech. Slov. 2015; 12(2): 77–85.
22. Dingwen Z., Libin F., Songyu L., Yongfeng D. Experimental Investigation of Unconfined Compression Strength and Stiffness of Cement Treated Salt-Rich Clay. Mar. Georesources Geotechnol. 2013; 31(4): 360–374. https://doi.org/10.1080/1064119X.2012.690826
23. Moayed RZ., Izadi E., Heidari S. Stabilization of saline silty sand using lime and micro silica. J. Cent. South Univ. 2012; 19(10): 3006–3011. https://doi.org/10.1007/s11771-012-1370-1
24. Hostler FS. Soil Stabilization. Ind. Eng. Chem. 1964; 56(4): 27–33.
25. Shillito R., Fenstermaker L. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site : A Literature Review. Nevada F. Off. Natl. Nucl. Secur. Adm. U.S. Dep. Energy Las Vegas, Nevada 2014;(45255): 42. Methods with Potential for Application at the Nevada National Security Site : A Literature Review
26. Firoozi AA., Guney Olgun C., Firoozi AA., Baghini MS. Fundamentals of soil stabilization. Int. J. Geo-Engineering 2017; 8(1): 1–16. https://doi.org/10.1186/s40703-017-0064-9
27. Makusa G (1). bib. P. Soil stabilization methods and materials in engineering practice : State of the art review. 2012; 1: 1–35. urn:nbn:se:ltu:diva-24093
28. Mosavat N., Oh E., Chai G. A Review of Electrokinetic Treatment Technique for Improving the Engineering Characteristics of Low Permeable Problematic Soils. Int. J. GEOMATE 2012; 2(2): 266–272.
29. Dejong JT., Soga K., Kavazanjian E., Burns S., Van Paassen LA., Al Qabany A., et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Bio- Chemo-Mechanical Process. Geotech. Eng. 2013; 63(4): 287–301. https://doi.org/10.1680/bcmpge.60531.014
30. Ghorbani A., Salimzadehshooiili M. Stabilization of sandy soil using cement and RHA reinforced with polypropylene fiber. MODARES Civ. Eng. J. 2018; 18(5): 165–176. 20.1001.1.24766763.1397.18.5.12.2
31. Mahinroosta M., Allahverdi A. A Scoping Review on Integrating Inorganic Nanomaterials into Cement Composites. Adv. Civ. Eng. Mater. 2019; 8(3): 526–553. 10.1520/ACEM20190067
32. MolaAbasi H. Evaluation of Zeolite Effect on Strength of Babolsar Sand Stabilized with Cement using Unconfined Compression Test. Modares Civ. Eng. J. 2017; 16(20). http://mcej.modares.ac.ir/article-16-1564-en.html.
33. Sabzi Z. Environmental Friendly Soil Stabilization Materials Available in Iran. J. Environ. Friendly Mater. 2018; 2(1): 33–39.
34. Pongsivasathit S., Horpibulsuk S., Piyaphipat S. Assessment of mechanical properties of cement stabilized soils. Case Stud. Constr. Mater. 2019; 11: e00301. https://doi.org/10.1016/j.cscm.2019.e00301
35. Majeed ZH., Taha MR. A Review of Stabilization of Soils by using Nanomaterials. Aust. J. Basic Appl. Sci. 2013; 7(2): 576–581. http://www.ajbasweb.com/.../576-581.pdf
36. Zhang H., Chen W., Zhao B., Phillips LA., Zhou Y., Lapen DR., et al. Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields. Appl. Soil Ecol. 2020; 146: 103378. https://doi.org/10.1016/j.apsoil.2019.103378
37. Elmashad M eldin MA. Improving the geotechnical behavior of sand through cohesive admixtures. Water Sci. 2018; 32(1): 67–78. https://doi.org/10.1016/j.wsj.2018.03.001
38. Padidar M., Jalalian A., Abdouss M., Najafi P., Honarjoo N., Fallahzade J. Effects of nanoclay on some physical properties of sandy soil and wind erosion. Int. J. Soil Sci. 2016; 11(1): 9–13. 10.3923/ijss.2016.9.13
39. Asakereh A., zarei halimeh., Amiri M. Microstructural Study of Soil Stabilization of the Southern Marl Using Lime and Nano-SiO2. Modares Civ. Eng. J. 2019; 19(3). http://mcej.modares.ac.ir/article-16-21650-en.html.
40. Vafaei M., Allahverdi A. Strength development and acid resistance of geopolymer based on waste clay brick powder and phosphorous slag. Struct. Concr. 2019; 20(5): 1596–1606. https://doi.org/10.1002/suco.201800138
41. Maghsoodloorad H., Allahverdi A. Developing Low-Cost Activators for Alkali-Activated Phosphorus Slag-Based Binders. J. Mater. Civ. Eng. 2017; 29: 40170061–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001806
42. Abbasi N., Mahdieh M. Improvement of geotechnical properties of silty sand soils using natural pozzolan and lime. Int. J. Geo-Engineering 2018; 9(1): 1–12. https://doi.org/10.1186/s40703-018-0072-4
43. Joe MA., Rajesh AM. Soil Stabilization Using Industrial Waste and Lime. Int. J. Sci. Res. Eng. Technol. 2015; 4(7): 799–805.
44. Zumrawi MME., Babikir AA-AA. Laboratory Study of Steel Slag Used in Stabilizing Expansive Soil. Asian Eng. Rev. 2017; 4(1): 1–6. 10.20448/journal.508.2017.41.1.6
45. Yadu L., Tripathi RK. Effects of granulated blast furnace slag in the engineering behaviour of stabilized soft soil. Procedia Eng. 2013; 51: 125–131. https://doi.org/10.1016/j.proeng.2013.01.019
46. Wang Y., Yang K., Tang Z., Chen C. The Effectiveness of the Consolidated Desert Surface by Mixing of Fly Ash and Polyacrylamide in Wind Erosion Control. Water. Air. Soil Pollut. 2016; 227(12). doi:10.1007/s11270-016-3137-z.
47. Chuah S., Duan WH., Pan Z., Hunter E., Korayem AH., Zhao XL., et al. The properties of fly ash based geopolymer mortars made with dune sand. Mater. Des. 2016; 92: 571–578. https://doi.org/10.1016/j.matdes.2015.12.070
48. Huan Y., Siripun K., Jitsangiam P., Nikraz H. A preliminary study on foamed bitumen stabilisation for Western Australian pavements. Sci. Res. Essays 2010; 5(23): 3687–3700. http://hdl.handle.net/20.500.11937/38489
49. Chen R., Lee I., Zhang L. Biopolymer Stabilization of Mine Tailings for Dust Control. J. Geotech. Geoenvironmental Eng. 2015; 141(2): 04014100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001240
50. Ayeldeen M., Negm A., El Sawwaf M., Gädda T. Laboratory study of using biopolymer to reduce wind erosion. Int. J. Geotech. Eng. 2018; 12(3): 228–240. https://doi.org/10.1080/19386362.2016.1264692
51. Zhou C., Zhao S., Huang W., Li D., Liu Z. Study on the stabilization mechanisms of clayey slope surfaces treated by spraying with a new soil additive. Appl. Sci. 2019; 9(1245): 1–13. https://doi.org/10.3390/app9061245
52. Hataf N., Ghadir P., Ranjbar N. Investigation of soil stabilization using chitosan biopolymer. J. Clean. Prod. 2018; 170: 1493–1500. https://doi.org/10.1016/j.jclepro.2017.09.256
53. al-Swaidani A., Hammoud I., Meziab A. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 2016; 8(5): 714–725. https://doi.org/10.1016/j.jrmge.2016.04.002
54. Tiwari SK., Sharma JP., Yadav JS. Akademia Baru Behaviour of Dune Sand and its Stabilization Techniques. J. Adv. Res. Appl. Mech. ISSN 2016; 19(1): 2289–7895.
55. Sadeghi SHR., Gholami L., Homaee M., Khaledi Darvishan A. Reducing sediment concentration and soil loss using organic and inorganic amendments at plot scale. Solid Earth 2015; 6(2): 445–455. https://doi.org/10.5194/se-6-445-2015, 2015
56. Norozi AG., Kouravand S., Boveiri M. A review of using the waste in soil stabilization. Int. J. Eng. Trends Technol. 2017; 21(1): 33–37. 10.14445/22315381/IJETT-V21P206