Effects of Temperature Changes on Nesting Success of Hawksbill Sea Turtles in the Persian Gulf Islands

Document Type : Original Research

Authors
1 Department of Environmental Science, Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Noor, 46417-76489, Iran
2 Environmental Science Department, Tarbiat Modares University, 46417-76489, Noor, IRAN
Abstract
Aim: Temperature is one of the factors that can affect the survival of sea turtle hatchlings and nest success. As a critically endangered species, Hawksbill sea turtle nests in several Iranian islands. Few studies have so far been conducted on the effect of temperature on nesting success of this species in the Persian Gulf. The objective of this study is to investigate the effects of temperature on the survival of turtle hatchlings in two nesting areas.

Methods: The temperature of the sand and the nest was recorded and analyzed using thermochron data loggers for several consecutive years from 2019 to 2021, from the beginning of the nesting season until the emergence of hatchlings. The three criteria of incubation success, mortality, and emergence success were chosen as indicators to evaluate nest success.

Findings: The lowest average annual sand temperature was related to Kish Island. The annual average temperature of the nests in Kish and Qeshm Islands showed a significant difference. The Kish nests were at a level higher than the thermal tolerance threshold (33 to 35°C) for less than five days. Examining the success of the nests showed that Kish has a higher than average hatching success than Qeshm, but this result does not hold true for the other two criteria.

Conclusion: Although checking the temperature of the sand and the nest can provide us with useful information regarding the survival of the turtle hatchlings and the implementation of protection decisions, investigating other factors besides temperature can be helpful as well.
Keywords

1. Lutz P.L., Musick J.A., Wyneken J. The biology of sea turtles, Volume II. CRC press; 2002. https://doi.org/10.1201/9781420040807
2. Hewavisenthi S., Parmenter C.J. Incubation environment and nest success of the flatback turtle (Natator depressus) from a natural nesting beach. Copeia. 2002; 2002(2):302-12. https://doi.org/10.1643/0045-8511(2002)002[0302:IEANSO]2.0.CO;2
3. Ackerman R.A., Lott D.B. Thermal, hydric and respiratory climate of nests. Reptilian incubation: environment, evolution and behavior. 2004; pp: 15-43.
4. Bustard H.R., Greenham P. Physical and chemical factors affecting hatching in the green sea turtle, Chelonia mydas (L.). Ecol. 1968; 49(2):269-76. https://doi.org/10.2307/1934455
5. Kamel S.J., Mrosovsky N. Deforestation: risk of sex ratio distortion in hawksbill sea turtles. Ecol. Appl. 2006. 16:923-931. https://doi.org/10.1890/1051-0761(2006)016[0923:DROSRD]2.0.CO;2
6. Matsuzawa Y., Sato K., Sakamoto W., Bjorndal K.A. Seasonal fluctuations in sand temperature: Effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Mar. Biol. 2002; 140:639–646. https://doi.org/10.1007/s00227-001-0724-2
7. Drake D.L., Spotila J.R. Thermal tolerances and the timing of sea turtle hatchling emergence. J. Therm. Biol. 2002; 27(1):71-81. https://doi.org/10.1016/S0306-4565(01)00017-1
8. Ackerman R.A. Physiological and ecological aspects of gas exchange by sea turtle eggs. Am. Zool. 1980; 20(3):575-83. https://doi.org/10.1093/icb/20.3.575
9. Bustard H.R. Mechanism of nocturnal emergence from the nest in green turtle hatchlings. Nature. 1967; 214(5085):317. https://doi.org/10.1038/214317a0
10. Mrosovsky N. Nocturnal emergence of hatchling sea turtles: control by thermal inhibition of activity. Nature. 1968; 220(5174):1338-1339. https://doi.org/10.1038/2201338a0
11. Limpus C.J., Reed P.C., Miller J.D., Grigg G., Shine R., Ehmann H. Temperature dependent sex determination in Queensland sea turtles: intraspecific variation in Caretta. In: Biology of Australian Frogs and Reptiles. 1985; pp: 343-351.
12. Salleh S.M., Nishizawa H., Ishihara T., Sah S.A.M., Chowdhury A.J.K. Importance of Sand Particle Size and Temperature for Nesting Success of Green Turtles in Penang Island, Malaysia. Chelonian Conserv. Biol. 2018; 17:116–122. https://doi.org/10.2744/CCB-1266.1
13. Gyuris E. The rate of predation by fishes on hatchlings of the green turtle (Chelonia mydas). Coral Reefs. 1994; 13:137–144. https://doi.org/10.1007/BF00301189
14. Wood A., Booth D. T., Limpus C. J. Sun exposure, nest temperature and loggerhead turtle hatchlings: Implications for beach shading management strategies at sea turtle rookeries. J. Exp. Mar. Biol. Ecol. 2014; 451:105-114. https://doi.org/10.1016/j.jembe.2013.11.005
15. Weber S.B., Broderick A.C., Groothuis T.G.G., Ellick J., Godley B.J., Blount J.D. Fine-scale thermal adaptation in a green turtle nesting population. Proc. R. Soc. B: Biol. Sci. 2012; 279:1077–1084. https://doi.org/10.1098/rspb.2011.1238
16. Zarate P.M. Hatching and emergence success in Green turtle Chelonia mydas nests in the Galapagos Islands. University of Florida. Aquat. Biol. 2013; 19:217-229. https://doi.org/10.3354/ab00534
17. Özdemir A., Türkozan O., Güçlü Ö. Embryonic mortality in loggerhead turtle (Caretta caretta) nests: A comparative study on Fethiye and Göksu Delta beaches. Turkish. J. Zool. 2008; 32:287–292. https://journals.tubitak.gov.tr/zoology/vol32/iss3/7
18. Howard R., Bell I., Pike D.A. Thermal tolerances of sea turtle embryos: Current understanding and future directions. Endanger. Species. Res. 2014; 26:75–86. https://doi.org/10.3354/esr00636
19. Maulany R.I., Booth D.T., Baxter G.S. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Mar. Biol. 2014; 159:2651–2661. https://doi.org/10.1007/s00227-012-2022-6
20. Segura, L. N., & Cajade, R. (2010). The effects of sand temperature on pre-emergent green sea turtle hatchlings. Herpetol. Conserv. Biol. 2010; 196-206. http://www.herpconbio.org/Volume_5/Issue_2/Segura_Cajade_2010.pdf
21. Pilcher N.J., Antonopoulou M., Perry L., Abdel-Moati M.A., Al Abdessalaam T.Z., Albeldawi M., Al Ansi M., Al-Mohannadi S.F., Al Zahlawi N., Baldwin R., Chikhi A. Identification of important sea turtle areas (ITAs) for hawksbill turtles in the Arabian region. J. Exp. Mar. Biol. Ecol. 2014; 460: 89-99. https://doi.org/10.1016/j.jembe.2014.06.009
22. Meylan A.B., Donnelly M. Status justification for listing the hawksbill turtle (Eretmochelys imbricata) as critically endangered on the 1996 IUCN Red List of Threatened Animals. Chelonian. Conserv. Biol. 1999; 3(2):200-24.
23. Tabib M., Tahmasbi S., Vazirizadeh A., Mohammadi M., Hadiramaki A. Biometric survey of hawksbill sea turtles (Eretmochelys imbricata) in Kish Island - Persian Gulf. J. Anim. Environ. 2011; 3(3):19-26. (In Persian). https://doi.org/10.1017/S0025315415001125
24. Zare R., Vaghefi M.E., Kamel S.J. Nest location and clutch success of the hawksbill sea turtle (Eretmochelys imbricata) at Shidvar Island, Iran. Chelonian. Conserv. Biol. 2012; 11(2):229-34. https://doi.org/10.2744/CCB-1003.1
25. Hesni M.A., Tabib M., Ramaki A.H. Nesting ecology and reproductive biology of the Hawksbill Turtle, Eretmochelys imbricata, at Kish Island, Persian Gulf. J. Mar. Biolog. Assoc. 2016; 96(7):1373-8. https://doi.org/10.1017/S0025315415001125
26. Razaghian H., Askari Hesni M., Shams Esfandabad B., Vafaei Shooshtari R., Toranjzar H. Study of nest site selection and reproductive characteristics of hawksbill sea turtle (Eretmochelys imbricata) in Mond protected area, Bushehr province. J. Anim. Environ. 2019; 11(3):93-100. (In Persian). https://www.aejournal.ir/article_96305.html?lang=en
27. Porter E., Booth D.T., Limpus C.J., Staines M.N., Smith C.E. Influence of short‐term temperature drops on sex‐determination in sea turtles. J. Exp. Zool. A: Ecol. Integr. Physiol .2012; 335:649-658. https://doi.org/10.1002/jez.2509
28. Van Lohuizen S., Rossendell J., Mitchell N.J., Thums M. The effect of incubation temperatures on nest success of flatback sea turtles (Natator depressus). Mar. biol. 2016; 163:1-12. https://doi.org/10.1007/s00227-016-2917-8
29. Laloë J.O., Esteban N., Berkel J., Hays G.C. Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. J. Exp. Mar. Bio. Ecol. 2016; 474:92–99. https://doi.org/10.1016/j.jembe.2015.09.015
30. Fuentes M.M.P.B., Maynard J.A., Guinea M., Bell I.P., Werdell P.J., Hamann M. Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northern Australia. Endanger. Species. Res. 2009; 9:33-40. https://doi.org/10.3354/esr00224
31. McGehee M.A. Factors affecting the hatching success of loggerhead sea turtle eggs (Caretta caretta). Retrospective Theses and Dissertations.1979; pp 437. https://stars.library.ucf.edu/rtd/437
32. Yntema C.L., Mrosovsky N. Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica. 1980; 36:33–36. https://www.jstor.org/stable/3891850
33. Miller J.D., Limpus C.J., Godfrey M.H. Nest Site Selection, Oviposition, Eggs, Development, Hatching, and Emergence of Loggerhead Turtles. Washington, DC: Smithsonian Institution Press, 2003; 3. pp 125–14.
34. López-Castro M.C., Carmona R., Nichols W.J. Nesting characteristics of the olive ridley turtle (Lepidochelys olivacea) in Cabo Pulmo, southern Baja California. Mar. Biol. 2004; 145:811–820. https://doi.org/10.1007/s00227-004-1359-x
35. Mortimer J.A. The Influence of Beach Sand Characteristics on the Nesting Behavior and Clutch Survival of Green Turtles (Chelonia mydas). Copeia. 1990; 19:802-17. https://doi.org/10.2307/1446446.
36. Peters A., Verhoeven K.J., Strijbosch H. Hatching and Emergence in the Turkish Mediterranean Loggerhead Turtle, Caretta caretta: Natural Causes for Egg and Hatchling. Herpetologica. 1994; 50:369–373. https://www.jstor.org/stable/3892711.