Drought stress tolerance in seedlings of four deciduous species, common in nurseries of semi-arid region of Iran

Document Type : Original Research

Authors
1 M.Sc, Student of Forestry, Department of Forest Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University,Noor, Iran
2 Professor, Department of Forest Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
3 Ph.D in Forestry, Department of Forest Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University,Noor, Iran
4 Senior Scientist, Research Institute for Nature and Forest, Geraardsbergen, Belgium
Abstract
Abstract:

Aim: With global warming and limited water resources in the world, especially in arid lands of Iran, managing the production of forest seedlings in the country's nurseries is facing a special challenge. In this regard, the study of drought tolerant plants to select them in the mass seedling production programs can be useful.

Material and methods: Potted seedlings of Persian oak (Quercus brantii Lindl.), pistachio (Pistacia atlantica Desf.), Judas-tree (Cercis siliquastrum L.) and black poplar (Populus nigra L.) exposed to a normal irrigation scheme (100% field capacity) and drought-stressed (30% field capacity) conditions were examined over a period of 120 days in a greenhouse of Bam Khorramabad Nursery to judge their tolerance for drought stress.

Findings: Drought-tressed seedlings from all species had a lower content of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids compared to the control plots, but the content of proline and malondialdehyde (MDA) did, however, increase. Under stress conditions, MDA content in black poplar, Judas-tree, Persian oak and pistachio was 174, 121, 105 and 102% higher than the control seedlings, respectively, and this increase in black poplar over other species ranged from 93.5 to 176.5%.

Conclusion: This study confirms that among four tree species, black poplar has lowest tolerance to drought stress. Thus, Persian oak, pistachio and Judas-tree, should be prioritized in the mass seedling production programs of nurseries in arid areas suffering from limited water resources, due to their higher tolerance to water scarcity.
Keywords

Subjects


1. Wada Y., Florke M., Hanasaki N., Eisner S., Fischer G., Tramberend S., Satoh Y., Van M.T., Yillia P., Ringler C., Burek P. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016;9(1):175-222.
2. Wang Y., Ni F., Yin D., Chen L., Li Y., He L., Zhang Y. Physiological Response of Lagerstroemia indica (L.) Pers. Seedlings to Drought and Rewatering. Trop. Plant Biol. 2021;14(4):360-370.
3. Deligoz A., Gur M. Morphological physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta Physiol. Plant 2015; 37(11):1-8.
4. Zahreddine H.G., Struve D.K., Talhouk S.N. Growth and nutrient partitioning of containerized Cercis siliquastrum L. under two fertilizer regimes. Sci. Hortic. 2007; 112(1):80-88.
5. Wei H., Movahedi A., Xu C., Sun W., Li L., Wang P., Li D., Zhuge Q. Overexpression of PtHMGR enhances drought and salt tolerance of poplar. Ann. Bot. (Oxford, U. K.). 2020; 125(5):785-803.
6. Javadi T., Rohollahi D., Ghaderi N., Nazari F. Mitigating the adverse effects of drought stress on the morpho-physiological traits and anti-oxidative enzyme activities of Prunus avium through β-amino butyric acid drenching. Sci. Hortic. (Amsterdam, Neth.). 2017; 218:156-63.
7. Keyvan S. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci. 2010; 8(3):1051-1060.
8. Farooq M., Wahid A., Kobayashi N.S., Fujita D.B., Basra S.M. Plant drought stress: effects, mechanisms and management. Sustainable Agric. 2009;153-188.
9. Newton R.J., Sen S., Puryear J.D. Free proline in water-stressed pine callus. Tappi J. 1987; 70(6):141-144.
10. Wang D., Huang G., Duan H., Lei X., Liu W., Wu J., Fan H. Effects of drought and nitrogen addition on growth and leaf physiology of Pinus massoniana seedlings. Pak. J. Bot. 2019; 51(5):1575-1585.

11. Jafarnia S., Akbarinia M., Hosseinpour B., Modarres Sanavi S.A., Salami S.A. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest 2018;11(2):212-220.
12. Pukacki P.M., Kaminska R.E. Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings. Trees 2005;19(5):539-544.

13. Lim H., Kang J.W., Lee S., Lee H., Lee W.Y. Growth and physiological responses of Quercus acutissima seedling under drought stress. Plant Mutat. Breed. Bio. 2017;5(4):363-370.
14. Saeidiabueshaghi Z., Pilehvar B., Sayedena S. Effect of drought stress on morphophysiological and biochemical traits of purple (Cercis siliquastrum L.) seedlings. Iranian J.Forest Poplar Res.2021; 29(1): 91-100.
15. Kordrostami F., Shirvany A., Attarod P., Khoshnevis M. Physiological responses of Robinia pseudoacacia seedlings to drought stress. J For Wood Prod. 2017;70(3):393-400.
16. Zarik L., Meddich A., Hijri M., Hafidi M., Ouhammou A., Ouahmane L., Duponnois R., Boumezzough A. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C. R. Biol. 2016; 339(5-6):185-196.
17. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1-15.
18. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125(1):189-198.
19. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973;39(1):205-207.

20. Duan B., Yang Y., Lu Y., Korpelainen H., Berninger F., Li C. Interactions between water deficit, ABA, and provenances in Picea asperata. J. Exp. Bot. 2007;58(11):3025-3036.
21. Sadeghzadeh M., Azadfar D., Nodoushan H.M., Arzanesh M.H., Tohidfar M. Shade role in facilitation drought stress symptoms on physiology of mount Atlas mastic (Pistacia atlantica Desf.) seedlings. Iranian J. Forest Poplar Res. 2017;25(2):332-341.
22. Rezaei Karmozdi M., Tabari Kouchaksaraei M., Sadati S.E. Effect of Biochar on Physiological Characteristics of European Yew (Taxus baccata) Seedling in Different Light Intensities. ECOPERSIA 2022;10(1):61-69.
23. Rostamikia Y., Tabari Kouchaksaraei M., Asgharzadeh A., Rahmani A. The effect of Plant Growth-Promoting Rhizobacteria on growth and physiological characteristics of Corylus avellana seedlings. ECOPERSIA 2016;4(3):1471-1479.
24. Delafan Azari N., Rostami Shahraji T., Gholami V., Hashemi Garmdareh S. An assessment of water requirement and investigation of different irrigation levels on growth parameters of eldar pine (Pinus eldarica Medw.) seedlings (case study: Tehran). Iranian J. Forest 2018;10(2): 237-250.
25. Claussen W. Proline as a measure of stress in tomato plants. Plant sci. 2005;168(1):241-248.
26. Zhang Y., Chen Q., Lan J., Luo Y., Wang X., Chen Q., Sun B., Wang Y., Gong R., Tang H. Effects of drought stress and rehydration on physiological parameters and proline metabolism in kiwifruit seedling. Int. J. Agric. Biol. 2018;20(12):2891-2896.
27. Zhang Y., Tan J., Guo Z., Lu S., He S., Shu W., Zhou B. Increased abscisic acid levels in transgenic tobacco over‐expressing 9 cis‐epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ. 2009;32(5):509-519.
28. Yang Y., Liu Q., Han C., Qiao Y.Z., Yao X.Q., Yin H.J. Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetica 2007;45(4):613-619.
29. Blum A., Munns R., Passioura J.B., Turner N.C., Sharp R.E., Boyer J.S., Nguyen H.T., Hsiao T.C., Verma D.P., Hong Z. Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol. 1996;110(4):1051-1053.
30. Liu Q., Feng Z., Xu W., Vetukuri R.R., Xu X. Exogenous melatonin-stimulated transcriptomic alterations of Davidia involucrata seedlings under drought stress. Trees. 2021;35(3):1025–1038.
31. Azizi S., Tabari M., Hadian J., Nosrat Abad A.R., Modares Sanavi S.A.M., Ammer C., Bader M.K.F. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. For. Ecol. Manage. 2021;(497):119478.