Prediction of Soil Hydrological Responses under Land Use/Cover Changes using Markov Chains in Jiroft Watershed, Iran

Document Type : Original Research

Authors
1 Ph.D. student, Faculty of Natural Resources and Earth Science, University of Kashan, Kashan, Iran
2 Professor*, Faculty of Natural Resources and Earth Science, University of Kashan, Kashan, Iran
3 Assistant professor, Faculty of Natural Resources and Earth Science, University of Kashan, Kashan, Iran
Abstract
Aims: This study aims to evaluate the Soil Hydrological Response (SHR) under LU/LC using a field-oriented and remote sensing database in the Jiroft watershed, Iran.

Materials & Methods: Land use maps were extracted from Landsat images using the supervised classification method for 1987-2017. The results were validated against field data from 100 points, where we found the Kapp index to be greater than 80%, indicating an acceptable land-use classification. The LU/LC map was then projected for 2047 using the CA-Markov model. The Curve Number (CN) for each land use was determined from superimposing LU/LC and the soil hydrological group map. The Soil Conservation Services-Curve Number method (SCS-CN) was employed to estimate runoff.

Findings: Good (densely vegetated) and moderate rangelands had a decreasing trend (i.e., -2.94% and -3.64% in 1987- 2017), while croplands, orchards, residential, and saline areas expanded (by 1.46%, 0.88%, 0.33%, and 7.21%). We found that agricultural lands, saline lands, and residential areas would increase by 0.75, 5.5, and 0.13%, by 2047, respectively.

Conclusion: We found a considerable increase (up to 6 mm increase) in runoff depth in some land-uses and more than 3.4% increase in the area of the high runoff producing class (IV). We believe that higher runoff production potential and more intense and short rain showers should be considered seriously in terms of possible flash floods in the future.
Keywords

Subjects


1. Jayasree V., Venkatesh B. Evaluating the hydrological response to land cover change: Dasanakatte catchment of Varahi river, Western Ghats, Karnataka. Int. J. Water Resour. Environ. Manage. 2012;3(1):23-32.
2. Zhang F., Tiyip T., Feng Z., Kung H.T., Johnson V., Ding J., Tashpolat N., Sawut M., Gui D. Spatio‐temporal patterns of land use/cover changes over the past 20 years in the middle reaches of the Tarim River, Xinjiang, China. L. Degrad. Dev. 2015;26(3):284-99.
3. Baker T.J., Miller S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013;486:100-11.
4. de Oliveira Barros K., Ribeiro C.A.A.S., Marcatti G.E., Lorenzon A.S., de Castro N.L.M., Domingues G.F., de Carvalho J.R., Dos Santos A.R. Markov chains and cellular automata to predict environments subject to desertification. J. Envron. Manage. 2018;225:160-7.
5. Yang X., Ren L., Liu Y., Jiao D., Jiang S. Hydrological response to land use and land cover changes in a sub-watershed of West Liaohe River Basin, China. J. Arid Land 2014;6(6):678-89.
6. Romulus C., Iulia F., Ema C. Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques. Cent. Eur. J. Geosci. 2014;6(3):363-72.
7. Scheffler R., Neill C., Krusche A.V., Elsenbeer H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 2011;144(1):281-9.
8. Ladisa G., Todorovic M., Liuzzi G.T. A GIS-based approach for desertification risk assessment in Apulia region, SE Italy. Phys. Chem. Earth, Parts a/B/C 2012;49:103-13.
9. Wijitkosum S. The impact of land use and spatial changes on desertification risk in degraded areas in Thailand. Sustain. Environ. Res. 2016;26(2):84-92.
10. Yousefi M., Mikaniki J., Ashrafi A., Neysani Samani N. Land use Change Detection and Modeling, Using Remote Sensing data, Markov Chains and Cellular Automata (Case Study: City of Bojnord). Geogr. Plann. Space 2018;7(26):1-16.
11. Ranzi R., Le T.H., Rulli M.C. A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. J. Hydrol. 2012;422:17-29.
12. Huang T.C., Lo K.F.A. Effects of land use change on sediment and water yields in Yang Ming Shan National Park, Taiwan. Environments 2015;2(1):32-42.
13. Hong N.M., Chu H.-J., Lin Y.-P., Deng D.-P. Effects of land cover changes induced by large physical disturbances on hydrological responses in Central Taiwan. Environ. Monit. Assess. 2010;166(1):503-20.
14. Halder A., Ghosh A., Ghosh S. Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl. Soft Comput. 2011;11(8):5770-81.
15. Veldkamp A., Lambin E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001;85(1):1-6.
16. Keshtkar H., Voigt W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model. Eath Syst. Environ. 2016;2(1):10.
17. Rimal B., Zhang L., Keshtkar H., Haack B.N., Rijal S., Zhang P. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS Int. Geo-Inf. 2018;7(4):154.
18. Torrens P.M., O'Sullivan D. Cellular automata and urban simulation: where do we go from here? : SAGE Publications Sage UK: London, England; 2001.
19. Ding H.-p., Chen J.-p., Wang G.-w., editors. A model for desertification evolution employing GIS with cellular automata. 2009 International Conference on Computer Modeling and Simulation; 2009 Feb. 20 2009 to Feb. 22 2009; Macau: IEEE.
20. Ghaderi S., Zare Chahouki M., Azarnivand H., Tavili A., Raygani B. Land use Change Prediction using CA-Markov modeling (Case Study: Eshtehard). Rangeland 2020;14(1):147-60.
21. Mohamed A., Worku H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 2020;31:100545.
22. Yousefi S., Mirzaee S., Tazeh M., Pourghasemi H., Karimi H. Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran. Desert 2015;20(1):1-10.
23. Firozjaei M.K., Kiavarz M., Alavipanah S.K., Lakes T., Qureshi S. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecol. Indic. 2018;91:155-70.
24. Cronshey R., Roberts R., Miller N., editors. Urban hydrology for small watersheds (TR-55 Rev.). Hydraulics and Hydrology in the Small Computer Age; 1985 August 12-17, 1985; Lake Buena Vista, Florida, United States ASCE.
25. United States Department of Agriculture U.S.S.C.S.E.D. Urban hydrology for small watersheds: Engineering Division, Soil Conservation Service, US Department of Agriculture; 1986.
26. Monteith J.L., editor Evaporation and environment. Symposia of the society for experimental biology; 1965: Cambridge University Press (CUP) Cambridge.
27. Satheeshkumar S., Venkateswaran S., Kannan R. Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Model. Earth Syst. Environ. 2017;3(1):24.
28. Naboureh A., Moghaddam M.H.R., Feizizadeh B., Blaschke T. An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain. Arab. J. Geosci. 2017;10(12):1-16.
29. Rodríguez Eraso N., Armenteras-Pascual D., Alumbreros J.R. J. Land Use Sci. J. L. Use Sci. 2013;8(2):154-74.
30. Mosayebi M., Maleki M. Change detection in land use using remote sensing data and GIS (Case study: Ardabil county). J. RS GIS Nat. Res. 2014;5(1):75-86.
31. Salehi N., Ekhtesasi M.R., Talebi A. Predicting locational trend of land use changes using CA-Markov model (Case study: Safarod Ramsar watershed). J. RS GIS Nat. Res. 2019;10(1):106-20.
32. Jafari Shalamzari M., Zhang W. Assessing water scarcity using the water poverty index (WPI) in Golestan province of Iran. Water 2018;10(8):1079.
33. Jafari Shalamzari M., Zhang W., Gholami A., Zhang Z. Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water 2019;11(9):1944.
34. Sheikh V.B., Jafari Shalamzari M., Farajollahi A., Fazli P. Soil erosion under simulated rainfall in loess lands with emphasis on land-use, slope and aspect. Ecopersia 2016;4(2):1395-409.
35. Hu S., Fan Y., Zhang T. Assessing the effect of land use change on surface runoff in a rapidly urbanized city: A case study of the central area of Beijing. Land 2020;9(1):17.
36. Ngo T.S., Nguyen D.B., Rajendra P.S. Effect of land use change on runoff and sediment yield in Da River Basin of Hoa Binh province, Northwest Vietnam. J. Mt. Sci. 2015;12(4):1051-64.
37. Amiri M., Eslamian S. Investigation of climate change in Iran. Int. J. Environ. Sci. Te. 2010;3(4):208-16.