Braimoh, A.K. and Onishi, T. Geostatistical techniques for incorporating spatial correlation into land use change models. Int J. App. Earth Obser. Geoinfo., 2007; 9(1): 438-446.
Breckling, B., Pe'er, G. and Matisons, G. Modeling Complex Ecological Dynamics. Springer., 2011; 397 P.
Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J. and Rojo-Alvarez, J.L. Martine Ramon M.Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE T. Geosci. Remote., 2008; 46(6): 1822-1835.
Devadas, R., Denhama, R.J. and Pringle, M. Support vector machine classification of object-based data for crop mapping, using multi-temporal land sat imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, 25 Melbourne, Australia, August – 01 September 2012; 185-190.
Dezhkam, S., Jabarian Amiri, B. and Darvishsefat, A.A. Anticipated changes in land use and cover in the Rasht city using Markov chain and CA model. Environ. Rese. J., 2015; 6(11): 104-139. (In Persian).
Debolini, M., Schoorl, J.M., Temme, A., Galli, M. and Bonari, E. Changes in Agricultural Land use Affecting Future Soil Redistribution Patterns: A Case Study in Southern Tuscany (Italy). Land Degrad Dev., 2015; 26(6): 574-586.
Falahatkar, S., Safianian, A., Khojedin, S.J. and Ziai, H. The ability of CA Markov model to predict land cover map (cas study: Esfahan Province). Geomatics Conferrence, Tehran, 2009; 1-9. (In Persian).
Huang, T.M., Kecman, V. and Kopriva, I. Kernel Based Algorithms for Mining Huge Data Sets, Supervised,Semi-supervised and unsupervised learning. Springer Verlag, Berlin, Heidelberg. 2006; 260 P.
Hamadan Regional Water Authority., Feasibility studies water and potential utilization of surface water Hamadan province, 2008; 69 P. (In Persian).
Haibo, Y., Longjiang, D., Hengliang, G. and Jie, Z. Tai'an land use Analysis and Prediction Based on RS and Markov Model. Procedia Environ. Sci., 2011; 10(4): 2625-2630.
Jafarian Jeloudar, Z., Shabanzadeh, S., Kavian, A. and Shokri M. Spatial Variability of Soil Features Affected by Landuse Type using Geostatistics. ECOPERSIA. 2014; 2 (3): 667-679.
Mirzaei Moosivand, A. Assesmentthe changes in rangeland at different times using satellite imagery and GIS in Khalkhalcity, Rangeland and Watershed Master's thesis, Mohaghegh Ardabili University. 2011; 117 P. (In Persian).
Mantero, P., Moser, G. and Serpico, S.B. Partially supervised classification of remote sensing images through SVM-based probability density estimation, IEEE T. Geosci. Remote Sens.2005; 43(3): 559-570.
Mountrakis, G., Im, J. and Ogole C. Support vector machines in remote sensing. J Photoger Remote Sens., 2011; 66(1): 247-259.
Muñoz-Rojas, M., Jordán. A. and Zavala, L.M. De la Rosa D, Abd-Elmabod S.K, Anaya Romero M. Impact of Land Use and Land Cover Changes on Organic Carbon Stocks in Mediterranean Soils (1956–2007). Land Degrade. Dev. 2015; 26(2): 168-179.
Rezaii Makhdoom, M.H., Valizade Kamran, Kh. and Andaryani, S. Almas Poor J. Geo. Plan., 2016; 19(52): 163-183. (In Persian).
Singh, A.K. Modeling Land use/ Land cover Changes Using Cellular Automata in Geo-Spatial Environment, MSC Theses, Netherland.2003; 58 P.
Sharma, A., Kamlesh, N., Tiwari, P. and Bhadoria, S. Effect of land use land cover change on soil erosion potential in an agricultural watershed.
Environ. Monit. Assess., 2011; 173
(1): 789-801.
Salazar,
A., Baldi,
G., Hirota, M. and Syktus,
J. McAlpine
C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review
Global Planet Change., 2015;
128: 103-119.
Saiful Bahari, N.I. and Ahmad, A. Aboobaider B.M. Application of support vector machine for classification of multispectral data. 7
th IGRSM International Remote Sensing & GIS Conference and Exhibition. IOP Conf. Series: Earth Environ. Sci.,
Tomsk, Russian, 2016; July11-16; 1-8.
Slam, M.R, MiahM, G. and Inoue, Y. Analysis of Land use and Land Cover Changes in the Coastal Area of Bangladesh using Landsat Imagery. Land Degrad. Dev., 2016; 27(4): 899-909.
Torrens, P.M. and O'Sullivan, D. Cellular automata and urban simulation: where do we go from here? Environ. Plan B., 2001; 28(1): 163-168.
Vapnik, V.N. An overview of statistical learning theory.IEEE Trans. Neural Network.1999; 10(5):988–1000.
Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R. and Espaldon, V. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ. Manage., 2002; 30(1): 391-405.
Yalew, S.G., Mu, M.L, Griensven, A.V., Teferi, E., Priess, J., Schweitzer, Ch. and Zaag, P. Land-Use Change Modeling in the Upper Blue Nile Watershed. Environ., 2016; 3(3):1-16.